岩溶地下河系统中多环芳烃的迁移、分配及生态风险研究
本文选题:岩溶地下河 + 多环芳烃 ; 参考:《西南大学》2014年博士论文
【摘要】:岩溶地下水资源对我国西南岩溶区的重要性不言而喻,然而随着社会经济快速发展和城市化进程的加快,我国西南岩溶区水环境问题日益突出。这不仅与人类活动有关,同时也与岩溶环境本身的脆弱性密切相关。多环芳烃(PAHs)是一类持久性有机污染物(POPs),普遍存在于环境介质中,其主要来自能源的燃烧。由于其具有毒性、能致癌、致突变而受到广泛关注。一旦进入岩溶环境有可能成为其最终归宿,危害岩溶生态系统和人类健康。为此,弄清岩溶地下河系统多环芳烃的来源、组成特征、环境行为、迁移和分配过程及生态风险,有助于提高对多环芳烃在岩溶地下河系统的污染机理的认识,具有重要意义。 本论文以重庆市南山老龙洞地下河系统为例,通过野外岩溶水文地质和污染源地面调查,野外定位观测、降雨期间采样监测,利用气相色谱—质谱联用仪为主要分析测试手段,以地下河及其地表污染来源为主线,研究多环芳烃在土壤、地表水、悬浮颗粒物、地下水、沉积物中的分布和污染特征及来源,分析多环芳烃在地下河中多相分配及影响因素,探讨多环芳烃在岩溶地下河系统中的迁移传输过程。结果分析表明: 1、地下河流域环境介质中PAHs含量、组成及污染水平。老龙洞流域表层土壤PAHs总量变化范围为277~3301ng/g,平均值为752.6±635.5ng/g,其组成以2-3环为主。其中7种致癌性PAHs总量平均占到∑PAHs的36.17%。土壤有机质(SOM)可能是影响PAHs含量的主要因素。受污水、季节的影响及不同PAH化合物的性质差异,水中]PAHs含量和组成呈现不同的变化特征。与溶解态PAHs相比,地下河颗粒态PAHs含量较低,表现为雨季水中赋存于颗粒物上的PAHs含量高于旱季,主要与颗粒物的来源和性质有关。流域内水中PAHs以及悬浮颗粒物结合的PAHs组成均以低环为主,而高环PAHs几乎未检测到,这与低环溶解性相对较高有关。相对于溶解态PAHs,沉积物中,高环PAHs的比重相对富集,表明随着分子量的增大,PAHs化合物倾向于吸附在颗粒物上 根据Mali szewska-Kordybach制定的土壤PAHs污染标准,研究区表层土壤PAHs污染水平分别达到轻、中等和重污染水平,其中大部分为中等污染水平;根据Baumard等的划分标准,老龙洞地下河沉积物PAHs污染处于中等到高污染水平。按照荷兰地下水水质标准和加拿大水质标准,老龙洞流域水中PAHs以低环污染为特征;而以PAHs总量来看,地下河流域水中PAHs污染只有少数月份超出中国饮用水标准。与其他地区河流相比地下河PAHs污染水平居中,但岩溶区特殊的形态和环境有利于富集PAHs等持久性有机污染物,应该引起足够的重视。 根据地下河潜在来源水中PAHs分子量特征及PAHs同分异构体比值解析表明,流域内水中PAHs主要来自于石油源;综合运用PAHs分子量特征比值、同分异构体比值和主成分/多元线性回归分析表明,流域内土壤PAHs污染主要来自交通排放与煤炭、石油及生物质的燃烧源和石油产品泄漏的混合源,其中来自于燃烧源占56.4%,而石油源占到43.6%。 2、岩溶地下河PAHs多相分配及影响因素。研究表明有机质是控制老龙洞地下河水相、沉积物、颗粒物中PAHs的行为和归宿的重要的因素。其中溶解性有机碳(DOC)、有机碳(TOC)与PAHs的关系相对明确,而与颗粒物有机碳(POC)的关系比较复杂。溶解性有机质(DOM)能够促进和积累低环的溶解态PAHs,是影响溶解态PAHs含量的主要因素,同时是高环PAHs重要的贮存库。悬浮颗粒物(SPM)是影响溶解态PAHs含量的因素之一。与溶解相PAHs有所不同,颗粒物有机质(POM)对PAHs的影响不显著,主要是因为存在DOM等胶体物质的影响。老龙洞地下河沉积物TOC与总PAHs含量成显著正相关,表明了沉积物有机质是影响沉积物PAHs含量的主要因素,但InP、DaA和BgP与TOC并不显著相关。说明除了有机质外,还有另外的因素在影响沉积物PAHs的含量,需要更为详细的分析。 通过研究表明颗粒相—水相PAHs分配系数与POC无关系,而悬浮颗粒物对分配系数有显著影响,原因是悬浮颗粒物浓度能够带来更多的DOC,导致DOM与POM相互竞争吸附PAHs。通过研究PAHs在沉积物—水相间的分配,获得了表征有机碳归一化的分配系数Koc与辛醇-水分配系数Kow之间的线性自由能方程。发现地下河沉积物对PAHs化合物的亲脂性较差。 3、岩溶地下河系统PAHs迁移传输过程。老龙洞地下河水与流域内其它水中PAHs相似的组成特征,示踪试验和不同水之间PAHs含量关系表明了岩溶形态对地下河系统PAHs的迁移有重要的作用。通过地下河上游与下游PAHs含量及组成比较发现2-3环PAHs表现为远距离迁移,而4-6环PAHs亲颗粒性高,溶解性低,容易被沉积物或者碳酸盐岩吸附,迁移能力不足。多环芳烃在地表土壤和地下河沉积物间的交换模式表明,地下河出口沉积物主要来源于上游水体传输及地表土壤的输入。 降雨监测表明,降雨期间落水洞的水输入和地表水渗入是控制PAHs迁移过程的主要因素,不同结合态的PAHs受控于水动力条件。降雨能够促进地下河系统PAHs由地表向地下迁移,而且流量越大,迁移量越大,一旦有足够的雨强,不仅带来更多的悬浮颗粒物,而且使高环PAHs更容易迁移,同时迁移过程中受DOC、POC、悬浮颗粒物浓度及颗粒物本身的种类和性质的影响,使得PAHs在各相中的分配产生差异。 4、岩溶地下河流域PAHs的生态风险评价。运用风险商值(RQ)法对水中PAHs生态风险进行评价,结果发现在检测到的PAH化合物的生态风险水平处于中等污染和重污染风险。以总PAHs来看,桂花湾泉和老龙洞地下河出口达到高风险等级,已严重污染;赵家院子泉和地表水处于中等风险2级别。老龙洞沉积物PAHs处于低风险水平,很少产生负面生态效应,而仙女洞PAHs污染存在较高的生态风险,这与ERL/ERM和TEL/PEL法,平均效应区间中值商法(M-ERM-Q)评价结果基本一致。土壤PAHs污染为中等风险。老龙洞流域水中3环PAHs对生态压力贡献较大,而土壤和沉积物中2环和3环贡献较大,因此需要采取有效措施减少2-3环PAHs的污染。 表层岩溶系统由于土层薄,岩溶裂隙发育,利于PAHs进入表层泉,导致桂花湾泉和赵家院子泉PAHs污染仍存在较高的生态风险。黄桷垭污水切断前后,老龙洞水PAHs污染分别处于高风险和中等风险状态。地下河的补给来源的介质中PAHs污染的生态风险越高,地下河中PAHs污染的生态风险也越高。不同分子量PAHs迁移行为的差异,导致老龙洞地下河上游和下游生态风险水平在水中和沉积物中有所差异,高环PAHs富集在地下河管道,其在逐渐往下游迁移过程中,将对下游的生态构成威胁。
[Abstract]:With the rapid development of the social economy and the acceleration of the urbanization process , the water environmental problems of the karst area in the southwest of China are becoming more and more serious .
In this paper , the distribution and pollution characteristics and source of polycyclic aromatic hydrocarbons ( PAHs ) in soil , surface water , suspended particulate matter , groundwater and sediment are studied by using gas chromatography - mass spectrometry ( GC - MS ) as an example , and the distribution and pollution characteristics and source of polycyclic aromatic hydrocarbons ( PAHs ) in soil , surface water , suspended particulate matter , groundwater and sediment are studied by gas chromatography - mass spectrometry ( GC - MS ) .
Soil organic matter ( SOM ) is the main factor affecting the content of PAHs .
According to the soil PAHs pollution standard , the level of PAHs pollution in the surface layer of the study area reached light , medium and heavy pollution levels , most of which were medium pollution levels .
According to the classification standard of Baumard et al . , the PAHs pollution in the old Longdong underground river sediments is at medium to high pollution level . According to the water quality standard of the Netherlands and the Canadian standard of water quality , the PAHs in the water of the old Longdong basin are characterized by low ring pollution ;
The PAHs pollution in the groundwater basin is only a few months beyond the standard of drinking water in China . The PAHs pollution level in the underground river is centered in comparison with the rivers in other areas . However , the special morphology and environment of karst area are conducive to the enrichment of persistent organic pollutants such as PAHs , which should be paid enough attention .
The analysis of the molecular weight of PAHs and the ratio of PAHs in potential source water in the base area indicates that the PAHs in the water in the basin are mainly from petroleum sources ;
Based on the analysis of the ratio of the molecular weight of PAHs , the ratio of isomers and the principal component / multivariate linear regression analysis , the PAHs pollution in the basin mainly comes from the mixed source of the traffic emission and the combustion sources of coal , oil and biomass and the leakage of petroleum products , of which 56.4 % of the sources are from the combustion source and 43.6 % of the petroleum sources .
Dissolved organic carbon ( DOC ) , organic carbon ( TOC ) and PAHs are the main factors influencing the content of PAHs in sediments .
It is shown that the distribution coefficient of PAHs in the particulate phase - water phase has no relation with POC , and the suspended particulate matter has a significant influence on the distribution coefficient because the concentration of suspended particles can bring more DOC , which leads to the competition between DOM and POM .
3 . PAHs migration transmission process in karst underground river system . The relationship of PAHs content between the underground river and other water in the basin indicates that the karst morphology plays an important role in the migration of PAHs in the underground river system . By comparison of the content and composition of PAHs in the upper and lower reaches of the underground river , it is found that the 2 - 3 - ring PAHs show a long - distance migration , while the 4 - 6 - ring PAHs have high affinity , low solubility , easy to be adsorbed by sediments or carbonate rocks , and the migration ability is insufficient . The exchange pattern between the surface soil and the underground river sediments indicates that the sediments of the underground river are mainly derived from the transmission of the upstream water body and the input of surface soil .
Rainfall monitoring indicates that the water input and surface water infiltration during rainfall are the main factors controlling the migration process of PAHs . PAHs in different binding sites are controlled by hydrodynamic conditions . The larger the flow rate , the greater the migration volume , the greater the flow rate , the greater the migration volume , and the influence of DOC , POC , suspended particulate matter concentration and the kind and nature of the particulate matter in the course of migration , so that the distribution of PAHs in each phase is different .
4 . The ecological risk assessment of PAHs in the karst underground river basin was evaluated . The ecological risk of PAHs in water was evaluated by using the method of risk quotient . The results showed that the ecological risk level of PAH compounds was at medium pollution and heavy pollution risk .
The PAHs in the old Longdong basin have a higher ecological risk than that of the ERL / ERM and TEL / PELLmethods . The PAHs in the old Longdong basin have a higher contribution to the ecological pressure , while the 2 and 3 rings in the soil and sediment contribute more . Therefore , effective measures are needed to reduce the pollution of 2 - 3 PAHs .
The higher ecological risk of PAHs in the groundwater is higher . The higher the ecological risk of PAHs pollution in the groundwater , the higher the ecological risk of PAHs pollution in the underground rivers .
【学位授予单位】:西南大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:X523;X824
【参考文献】
相关期刊论文 前10条
1 段永红;陶澍;王学军;李本纲;徐福留;刘文新;曹军;朱利中;骆永明;;天津表土中多环芳烃含量的空间分布特征与来源[J];土壤学报;2005年06期
2 刘增俊;滕应;黄标;李振高;骆永明;;长江三角洲典型地区农田土壤多环芳烃分布特征与源解析[J];土壤学报;2010年06期
3 陈椽;张明时;杨加文;袁茂琴;叶峰;林野;;黔南州土壤中多环芳烃的污染现状及来源分析[J];生态环境学报;2009年03期
4 张天彬,杨国义,万洪富,饶勇,高原雪,夏运生;东莞市土壤中多环芳烃的含量、代表物及其来源[J];土壤;2005年03期
5 芦敏;袁东星;欧阳通;林庆梅;;厦门岛表土中多环芳烃来源分析及健康风险评估[J];厦门大学学报(自然科学版);2008年03期
6 许士奋,蒋新,王连生,全燮,D.Martens;长江和辽河沉积物中的多环芳烃类污染物[J];中国环境科学;2000年02期
7 刘敏,侯立军,邹惠仙,杨毅,陆隽鹤,王晓蓉;长江口潮滩表层沉积物中多环芳烃分布特征[J];中国环境科学;2001年04期
8 祁士华,张干,刘建华,张伟玲;拉萨市城区大气和拉鲁湿地土壤中的多环芳烃[J];中国环境科学;2003年04期
9 马万里;李一凡;孙德智;齐虹;刘丽艳;;哈尔滨市大气中多环芳烃的初步研究[J];中国环境科学;2010年02期
10 胡英;祁士华;兰兰;张婉珈;齐书蕾;;岩溶地下河中HCHs和DDTs的分布特征与健康风险评价[J];中国环境科学;2010年06期
相关博士学位论文 前1条
1 孔祥胜;典型岩溶巨型漏斗中持久性有机污染物的环境行为研究[D];中国地质大学;2012年
,本文编号:2043210
本文链接:https://www.wllwen.com/falvlunwen/sflw/2043210.html