资产定价,稳健投资与随机最优控制的动态规划
[Abstract]:In this paper, the asset pricing under asymmetric information, robust investment under stochastic differential utility and stochastic optimal control dynamic programming under non-Lipschitz conditions are studied, which are divided into the following three parts: the first part discusses the problem of insider trading. This chapter is an extension of the internal investor model in Back (1992) and Cho (2003). There are three categories of people in this financial market: internal investors, uninformed traders and market makers. We consider a class of pricing rules which are more extensive than the model studied by Cho (2003). We mainly use the method of dynamic programming to prove that when the insiders are risk-neutral, although the pricing rules formally rely on the trajectory of cumulative trading volume, when the market is balanced, the "random pressure" in the pricing rules disappears. In essence, prices still rely only on cumulative trading volume in the market, rather than on their tracks. Accordingly, our results generalize the conclusions of Back (1992) and Cho (2003) in classical models. In the second part, the problem of cross-temporal consumer investment with stochastic differential utility function is considered. We establish the verification theorem of the generator f of the extended stochastic differential utility function with respect to y with monotonicity. As an application, we consider the (a) robust consumer portfolio and the (b) extended stochastic differential utility function. In (a), we give the optimal solution of robust investors, and compare their behavior with ordinary investors. In (b), we also give the characterization of investor behavior under the extended stochastic differential utility function. In the third part, we discuss the problem of recurrent stochastic optimal control. We study the generator of BSDE describing stochastic differential utility. F is a case where y is non-Lipschitz. In this paper, the dynamic programming principle of this kind of problem is given, and under certain conditions, it is proved that the value function is the viscous solution of the corresponding HJB equation.
【学位授予单位】:复旦大学
【学位级别】:博士
【学位授予年份】:2013
【分类号】:O221.3;F830
【共引文献】
相关期刊论文 前4条
1 ;STOCHASTIC HEAT EQUATIONS WITH RANDOM INITIAL CONDITIONS[J];Chinese Annals of Mathematics;2005年04期
2 蒋飞达;杨孝平;;WEAK SOLUTIONS OF MONGE-AMP錇RE TYPE EQUATIONS IN OPTIMAL TRANSPORTATION[J];Acta Mathematica Scientia;2013年04期
3 Mirjana STOJANOVI鋫;;REGULARITY OF SOLUTIONS TO NONLINEAR TIME FRACTIONAL DIFFERENTIAL EQUATION[J];Acta Mathematica Scientia;2013年06期
4 刘海蓉;杨孝平;向妮;;Heisenberg群上抛物型方程解的平均值公式[J];数学学报;2014年05期
相关会议论文 前1条
1 Fu Yi;Bian Baojun;Zhang Jizhou;;The Optimal Control of Production-Inventory System[A];第25届中国控制与决策会议论文集[C];2013年
相关博士学位论文 前10条
1 申广君;几种自相似高斯随机系统的分析及相关问题[D];华东理工大学;2011年
2 任丽颖;有限维和无限维空间中的G-Lévy过程及其相关问题[D];山东大学;2012年
3 王旭东;基于MAP估计,变分PDE的图像去噪问题研究[D];西安电子科技大学;2013年
4 曾才斌;分数Brownian运动驱动的随机微分方程的动力学研究及统计分析[D];华南理工大学;2013年
5 刘芳;几类含无穷Laplace算子的非线性偏微分方程的解的适定性[D];南京理工大学;2013年
6 向修海;随机流动性、资产交交换策略和定价研究[D];华中科技大学;2013年
7 刘海蓉;Heisenberg群上几类偏微分方程解的性质[D];南京理工大学;2013年
8 蒋飞达;几类Monge-Ampère型方程的Dirichlet问题[D];南京理工大学;2013年
9 杨云云;基于Split Bregman方法的快速图像分割模型的研究[D];哈尔滨工业大学;2012年
10 张良泉;噪声摄动以及正倒向随机微分方程最优控制问题[D];山东大学;2013年
相关硕士学位论文 前10条
1 孙丽雅;Rosenblatt过程的逼近及其相关分析[D];东华大学;2011年
2 侯雅文;基于隐马尔可夫模型的股票价格指数预测[D];暨南大学;2007年
3 庞亮;由分式噪声驱动的随机微分方程[D];华中科技大学;2008年
4 樊涛;带部分风险资产的最优投资问题[D];海南师范大学;2013年
5 王志刚;亚式期权三叉树定价模型分析[D];扬州大学;2013年
6 黄志圣;一类金融数学方程解的适定性研究[D];集美大学;2013年
7 熊俊;回望期权的三叉树定价模型[D];扬州大学;2013年
8 吕会影;Knight不确定下带通胀和随机收入的最优消费和投资问题研究[D];安徽工程大学;2013年
9 潘磊;奈特不确定下考虑红利、通涨和机制转换的最优消费投资研究[D];安徽工程大学;2013年
10 杨武;模型不确定下最优消费和投资组合决策问题研究[D];安徽工程大学;2013年
,本文编号:2494969
本文链接:https://www.wllwen.com/guanlilunwen/bankxd/2494969.html