爆炸荷载作用下钢柱局部屈曲的临界比例距离
[Abstract]:The collapse of steel structure subjected to explosive load is mainly caused by the destruction of key members such as steel columns. The failure mode of local buckling has been found in many explosion failure events of steel columns or steel members in the world. The local buckling of steel columns caused by explosion will affect the residual bearing capacity of steel columns. I-shaped steel columns and square steel columns are common types of steel columns in engineering structures. The local buckling of steel columns under explosive loading is studied, and the key factors affecting the critical proportional distance of local buckling of steel columns under explosive load are analyzed. The formula of critical proportional distance is obtained, which provides a certain reference for the design of steel column anti-explosion and the determination of reasonable safety distance of protection. It has important practical value and practical significance for structural safety and protection engineering. The main work of this paper includes the following five items. (1) the B-R criterion is applied to the dynamic buckling evaluation of typical steel columns under explosive loading. A method for determining the local buckling of steel columns under explosive loading and the determination of their critical proportional distance are proposed. (2) the effect of local buckling of steel columns on the vertical bearing capacity of steel columns under explosive loading is studied. The results show that local buckling of steel columns under explosive load causes sudden change of damage index of steel columns based on vertical bearing capacity and moderate failure. (3) based on B-R criterion, the quantity of explosive and the ratio of width to thickness of plates are studied. The influence of four parameters of steel column height and steel yield strength on the critical proportional distance of local buckling of steel column under explosive load. The results show that the amount of explosive and the ratio of plate width to thickness are the main factors affecting the critical ratio distance of local buckling of square steel columns. Compared with the local buckling control of steel columns under static load, the local buckling control of steel columns under explosive load is more strict to the limit value of the width to thickness ratio of plates. (4) based on B-R criterion, the local buckling control of steel columns under explosive load is more strict than the local buckling control of steel columns under static load. In view of the effect of explosive load on the direction of strong axis of I-shaped steel column, the quantity of explosive, the ratio of flange width to thickness and the ratio of web height to thickness are studied. The influence of five parameters of steel column height and steel yield strength on the critical proportional distance of local buckling of I-shaped steel column under explosive loading. The results show that the amount of explosive and the ratio of flange width to thickness are the main factors affecting the critical ratio distance of local buckling of I-shaped steel column. Compared with the local buckling of I-shaped steel column under static force, the local buckling of I-shaped steel column appears only on the flange when the explosive load acts on the strong axial direction of I-shaped steel column. The effect of the ratio of height to thickness on the local buckling of steel columns is not obvious. (5) based on the results of finite element simulation, the key factors affecting the critical proportional distance of local buckling of steel columns under explosive loads are considered. The critical proportional distance formula for local buckling of steel column and I-shaped steel column under explosive load caused by arbitrary explosive is fitted.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TU391;TU352.13
【参考文献】
相关期刊论文 前10条
1 李国强;孙建运;王开强;;爆炸冲击荷载作用下框架柱简化分析模型研究[J];振动与冲击;2007年01期
2 曾纪杰;傅衣铭;;正交各向异性圆柱壳的弹塑性屈曲分析[J];工程力学;2006年10期
3 汪优;赵明华;黄靓;;桥梁基桩屈曲机理及其分析方法[J];中南公路工程;2005年04期
4 杜林,石少卿,张湘冀,黄翔宇;钢管混凝土短柱内部抗爆炸性能的有限元数值模拟[J];重庆大学学报(自然科学版);2004年10期
5 孙强;伸出地面上基桩的动力稳定性研究[J];岩土工程学报;2003年04期
6 柳锦春,方秦,龚自明,范俊余;爆炸荷载作用下钢筋混凝土梁的动力响应及破坏形态分析[J];爆炸与冲击;2003年01期
7 陈立群,程昌钧;非线性粘弹性柱的稳定性和混沌运动[J];应用数学和力学;2000年09期
8 傅衣铭,宋丽霞;开口薄壁杆的非线性动力稳定性分析[J];湖南大学学报(自然科学版);1998年04期
9 彭兴黔,黄永琴;刚性块轴向冲击有限长弹性杆的稳定问题[J];江汉石油学院学报;1996年03期
10 赵明华,王季柏;基桩计入摩阻力的屈曲分析[J];岩土工程学报;1996年03期
相关博士学位论文 前3条
1 汪明;爆炸荷载作用下钢结构损伤机理及砌体墙破碎过程研究[D];天津大学;2010年
2 师燕超;爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理[D];天津大学;2009年
3 孙建运;爆炸冲击荷载作用下钢骨混凝土柱性能研究[D];同济大学;2006年
相关硕士学位论文 前4条
1 张荣;圆钢管侧向冲击性能研究[D];哈尔滨工业大学;2013年
2 张文娜;冲击作用下钢梁侧向弯扭屈曲行为的数值模拟分析[D];山东建筑大学;2013年
3 刘蕾;爆炸荷载作用下轻钢柱动力响应及破坏模式数值分析[D];沈阳建筑大学;2012年
4 董义领;爆炸荷载作用下钢筋混凝土柱的动力响应分析[D];同济大学;2008年
,本文编号:2306759
本文链接:https://www.wllwen.com/guanlilunwen/chengjian/2306759.html