远程挖掘机故障诊断系统设计研究
[Abstract]:Excavator is one of the most widely used construction machinery. The reliability and safety standards of excavators are becoming more and more important, and the importance of fault diagnosis is becoming more and more important. However, the current excavator fault diagnosis system developed by domestic enterprises has simple knowledge base, limited fault diagnosis scope, can not replace maintenance experts to quickly diagnose and accurately locate excavator faults, and has low reusability. Platform independence and other shortcomings. Aiming at the above problems, this paper puts forward the establishment of remote excavator fault diagnosis system. The specific work includes: summarizing the cooperative diagnosis system architecture between enterprise and remote end, based on the original framework of B / S (Browser/Server) diagnostic expert system. According to the system design requirements, a remote excavator fault diagnosis system framework is constructed. The system composition and working principle of rotary hydraulic system are analyzed. Aiming at the shortcomings of the traditional expert system in knowledge acquisition, this paper combines the fault tree analysis method, establishes the fault tree model based on the summarized theory knowledge and the expert practical diagnosis experience knowledge, and optimizes the knowledge acquisition method. The knowledge representation of excavator fault is improved by combining production rule representation and frame representation. In the aspect of knowledge base, the knowledge entity is analyzed based on the relation model of E-R (Entity Relationship Diagram), and the knowledge base of excavator fault is constructed by using MySQL database. Furthermore, according to the characteristics of excavator fault knowledge representation, the forward reasoning strategy and corresponding explanation mechanism of rule frame fusion are designed. On the basis of theoretical research, the prototype system of remote excavator fault diagnosis is developed by using Django framework and Python,JS (JavaScript), HTML (Hyper Text Markup Language) language. The test results are good, the fault knowledge of excavator is counted effectively, the fault diagnosis and accurate location are realized in place of maintenance expert, and the maintenance efficiency of excavator fault is greatly improved.
【学位授予单位】:长安大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU621
【参考文献】
相关期刊论文 前10条
1 任宇;;中国与主要发达国家智能制造的比较研究[J];工业经济论坛;2015年02期
2 马创新;;论知识表示[J];现代情报;2014年03期
3 罗天洪;杨彩霞;孙冬梅;;基于故障树的汽车起重机液压故障诊断专家系统[J];机械科学与技术;2013年04期
4 贾宏;姚继亮;;挖掘机无回转动作故障分析与排除[J];工程机械;2013年04期
5 李红卫;杨东升;孙一兰;韩娟;;智能故障诊断技术研究综述与展望[J];计算机工程与设计;2013年02期
6 王国彪;何正嘉;陈雪峰;赖一楠;;机械故障诊断基础研究“何去何从”[J];机械工程学报;2013年01期
7 王渠;;液压挖掘机回转故障的分析及排除[J];工程机械与维修;2012年11期
8 邵辉;胡伟石;罗继亮;宋军;;自动挖掘机的动作规划[J];控制工程;2012年04期
9 王伟嘉;汪海航;;基于专家系统解释机制的报告生成方法[J];计算机应用;2012年S1期
10 段壮志;张宗强;张成海;;基于故障树分析法的挖掘机故障诊断知识库设计[J];长春工程学院学报(自然科学版);2012年01期
相关硕士学位论文 前10条
1 李在成;柔性涂装输送线报警及故障诊断专家系统研究[D];江苏大学;2016年
2 刘飞;国产中型挖掘机液压系统故障分析及查询软件设计[D];山东大学;2015年
3 李民曦;基于故障树的航空发动机故障诊断研究[D];中国民航大学;2014年
4 宋佳昊;大吨位履带起重机故障信息管理与故障诊断系统[D];上海交通大学;2014年
5 庞斌;雷达故障诊断专家系统的设计和实现[D];吉林大学;2013年
6 胡姗;基于FTA地源热泵热水系统故障诊断专家系统研究[D];湖南大学;2013年
7 申浩;波音737NG反推故障诊断专家系统研究[D];上海交通大学;2012年
8 辛朝阳;全液压振动压路机液压故障诊断专家系统的研究[D];武汉理工大学;2012年
9 孟东;基于支持向量机的挖掘机故障诊断系统的研究[D];重庆大学;2009年
10 杜鹏;面向对象的液压挖掘机故障诊断系统研究[D];吉林大学;2008年
,本文编号:2282131
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2282131.html