当前位置:主页 > 科技论文 > 建筑工程论文 >

纵墙布置不规则砌体结构房屋抗震性能试验研究

发布时间:2019-07-10 15:53
【摘要】:中国是一个地震灾害十分严重的国家。尽管混凝土结构和钢结构房屋在我国已经得到普遍的应用,但是在住宅建筑中多层砌体结构仍有相当大的比例,特别是在中小城镇多层住宅采用砌体结构形式几乎被所有的开发商所认同。随着车辆的日益增加,住宅小区内停车乱、停车难现象日益严重。同时,底层楼房存在着私密性差、噪音大、采光差、防盗差等问题,所以越来越多的住宅小区住宅楼的底层设置成汽车车库,以解决一层楼房居住性差和小区停车难的问题。在房屋底层车库的设计中,为了满足车库使用功能的要求,需要在底层外纵墙上开大洞口。我国《建筑抗震设计规范》第7.1.7条规定,外纵墙体开洞率不应过大,6、7度时不宜超过55%,8、9度时不宜大于50%。底层外纵墙上开大洞口,将会造成结构竖向刚度不均匀,平面刚度不对称,属于平面布置不规则建筑。从技术方面考虑,如果能够从技术上解决刚度不均匀的问题,就能够克服纵墙上开大洞口对结构抗震性能的不利影响。本文提出了一种对底层纵墙上开大洞口平面布置不规则的砌体结构房屋抗震加固的处理方法——等刚度法。所谓等刚度法即根据上下层外纵墙抗侧刚度相等的原则,在底层外纵墙大洞口两侧的横墙位置处设置钢筋混凝土柱,洞口上部设置过梁,柱的截面尺寸根据等效侧移刚度要求确定。本文通过一个试验模型,对这种设置等效框架柱的纵墙布置不规则砌体结构房屋的抗震性能进行了试验研究。试验模型的原型结构为常见的六层砌体结构住宅楼,取其中一个单元进行试验分析,设计制作1:4外纵墙大开洞、非对称的纵墙布置不规则砌体结构房屋模型。通过对缩尺模型进行低周反复水平加载试验,得到纵墙布置不规则砌体结构房屋的破坏形态、结构构件的应力分布、结构在水平荷载作用下各层的水平位移,总结分析了设置等效框架柱的纵墙布置不规则砌体结构房屋的受力机理、滞回特性曲线、骨架曲线、延性性能及耗能性能,并对等效框柱及过梁的设计提出设计建议。通过试验研究得出如下主要结论:1.对于底层外纵墙开大洞口的纵墙布置不规则砌体结构房屋,可通过设置等效混凝土框柱和过梁,解决纵墙开大洞口对砌体结构抗震性能的不利影响。2.等效混凝土框柱的截面尺寸,可根据等刚度法,由上层墙体的抗侧刚度来计算等效混凝土框柱的截面大小。对于中间的等效混凝土框柱可按上下固接计算侧移刚度,对于设置在两端山墙位置处的等效混凝土框柱可按上端铰接,下端固定的框架柱计算侧移刚度。3.等效混凝土框柱承担的水平地震力,则按照各自的等效刚度分配地震底部总剪力。4.设置等效混凝土框柱和过梁的底层纵墙布置不规则砌体结构房屋,受水平地震作用时,在开裂以前的弹性阶段,各层层间位移基本相同,房屋不存在扭转的问题。当水平荷载比较大时,二层墙体破坏严重,刚度降低,层间位移加大,一层框柱未发生破坏,且一层墙体破坏程度较二层相对轻,出现“下刚上柔”的情况。随着荷载的增大,由于墙体的破坏程度不同,刚度发生变化,房屋会存在一定扭转的效应,但从试验结果看,并不明显。5.各纵轴墙体裂缝多为水平弯曲裂缝和剪切斜裂缝,水平弯曲裂缝主要分布在两侧构造柱、窗下底部墙体和窗间墙与窗下墙交接处,其破坏形式为弯曲受拉破坏。剪切斜裂缝主要分布在各层墙体的窗间墙和窗间墙下部,裂缝为呈现“x”形或“倒八字”的斜裂缝,破坏形式为剪切破坏。当窗间墙宽度较小时,窗间墙上多为水平裂缝,当窗间墙较宽时,多为斜裂缝。二层墙体破坏相对较重,一层较轻,框柱未发生破坏。6.两端横墙墙体上(山墙上)裂缝多为水平弯曲裂缝,水平弯曲裂缝主要分布在各层墙体的底部,其破坏形式为弯曲受拉破坏,说明模型受水平地震作用时,将作为整体的空间结构受力。7.在反复荷载作用下,中部框柱上下端弯矩相差不大,原因是楼板和上部墙体对底层柱均有明显的约束作用,在分析其内力时可按柱上下部均固接的简图计算;对边跨框柱(设置在山墙处的等效框柱),下部弯矩大,上部弯矩很小,可简化为柱上部铰接下端固接的计算简图分析内力。8.各个构造柱中四根纵向钢筋的应力变化规律基本一致(全部受力或受压),说明构造柱作为墙体的一部分共同受力。9.在水平荷载作用下,二层墙体既有剪力又有弯矩,当墙体产生水平裂缝或斜裂缝后,上部荷载的传递路径将发生变化,每个墙肢传来的竖向荷载将直接传至框柱上部的过梁上,同时墙肢在水平荷载作用下产生的弯矩并非作用在等效混凝土框柱与过梁的节点上,将使得构造柱受拉,墙肢局部受压,等效混凝土框柱一侧的过梁受到弯矩产生的压力作用,此时在梁的跨中必将产生正弯矩,从而造成过梁与一般的框架梁有完全不同的受力方式,因此在设计时应适当增加过梁的纵向钢筋。10.本试验模型的滞回曲线符合反s形的主要特征,在端部设置等效混凝土框柱及过梁(或圈梁)组成局部框架的方法能明显提高一层的抗侧刚度。本试验模型在反复荷载作用下产生的不对称的裂缝,且根据滞回曲线的不对称性可得二层产生裂缝较多,破坏较为严重。在各层墙体中,随施加水平位移的增大,各层墙体耗能均增加,其中二层墙体耗能增幅最大,耗能最多,二层耗能能力得到有效的发挥。而且此类砌体结构房屋的延性与普通多层砌体结构房屋的延性相似。
[Abstract]:China is a country with a very serious earthquake disaster. Although the concrete structure and the steel structure house have been widely used in our country, the multi-storey masonry structure in the residential building still has a considerable proportion, especially in the middle and small towns, the multi-storey residence is almost all accepted by all the developers in the form of masonry structure. With the increasing of the vehicle, parking and parking in the residential area are becoming more and more serious. At the same time, there are problems such as poor privacy, large noise, poor lighting, and poor anti-theft in the bottom building, so the lower floor of the more and more residential building is set up as an automobile garage to solve the problem of poor residential property and difficult parking of the community. In the design of the bottom garage of the house, in order to meet the requirements of the use function of the garage, a large opening is required on the outer vertical wall of the bottom layer. According to the Code for Seismic Design of Buildings in China> Article 7.1.7, the hole opening rate of the outer longitudinal wall shall not exceed 5%, and not more than 55%,8 and 9 degrees shall not be more than 50%. The opening of the large opening on the outer longitudinal wall of the bottom layer will cause the vertical stiffness of the structure to be uneven and the plane stiffness is not symmetrical, and it belongs to the irregular construction of the plane layout. From the technical point of view, if the problem that the rigidity is not uniform can be solved technically, the adverse effect of the opening of the opening on the longitudinal wall on the seismic performance of the structure can be overcome. In this paper, a method to deal with the earthquake-resistant reinforcement of masonry structure with irregular layout on the vertical wall of the bottom layer is presented. The so-called isostiffness method is based on the principle that the anti-lateral rigidity of the upper and lower outer longitudinal walls is equal, a reinforced concrete column is arranged at the position of the transverse wall on both sides of the large opening of the outer longitudinal wall of the bottom layer, the upper part of the opening is provided with a beam, and the section size of the column is determined according to the equivalent side moving rigidity requirement. In this paper, a test model is adopted to study the anti-seismic performance of an irregular masonry structure with an equivalent frame column. The prototype structure of the test model is a common six-story masonry residential building, and one of the units is tested and analyzed, and a large opening hole of the outer longitudinal wall and an asymmetric vertical wall are designed to form the house model of the irregular masonry structure. by carrying out low-cycle and repeated horizontal loading test on the scale model, the damage form of the house of the irregular masonry structure with the longitudinal wall is obtained, the stress distribution of the structural component and the horizontal displacement of the structure under the action of the horizontal load are obtained, The stress mechanism, hysteresis characteristic curve, skeleton curve, ductility and energy dissipation performance of the house with irregular masonry structure of the vertical wall of the equivalent frame column are analyzed and the design suggestions are put forward for the design of the equivalent frame column and the cross beam. The main conclusions are as follows:1. In order to solve the adverse effect of the opening of the vertical wall on the seismic performance of the masonry structure by arranging the equivalent concrete frame column and the over-beam for the vertical wall of the opening of the bottom outer longitudinal wall, the masonry structure can be solved by setting the equivalent concrete frame column and the over-beam. The cross-sectional dimension of the equivalent concrete frame column can be calculated according to the rigidity method, and the cross-sectional size of the equivalent concrete frame column can be calculated by the anti-lateral stiffness of the upper wall. For the middle equivalent concrete frame column, the lateral displacement stiffness can be calculated according to the up-down and up-down, and the side-shift stiffness can be calculated for the equivalent concrete frame column which is arranged at the position of the two ends of the concrete frame, and the side-shifting rigidity can be calculated by the fixed frame column at the lower end. The total shear force at the bottom of the seismic bottom is assigned in accordance with the respective equivalent stiffness when the horizontal seismic force is assumed by the equivalent concrete frame column. An equivalent concrete frame column and an underfloor longitudinal wall of the cross beam are provided with an irregular masonry structure house, and when subjected to the horizontal earthquake action, the displacement of the layers is basically the same before the cracking, and the house does not have the problem of torsion. When the horizontal load is relatively large, the two-layer wall is seriously damaged, the rigidity is reduced, the interlayer displacement is increased, the layer of the frame column is not damaged, and the damage degree of one layer of the wall is relatively light in the second layer and the "to be soft and soft" is present. With the increase of load, the damage degree of the wall is different, the rigidity is changed, the house will have a certain effect of torsion, but it is not obvious from the test results. The crack of each longitudinal axis is mostly horizontal bending crack and shear oblique crack, and the horizontal bending crack is mainly distributed on both sides of the structural column, the bottom wall of the lower bottom of the window and the junction of the window wall and the lower wall of the window, and the damage form of the horizontal bending crack is bending and tension failure. The shear oblique crack is mainly distributed in the lower part of the inter-window wall and the inter-window wall of the wall of each layer, and the crack is an oblique crack that presents a "x"-shaped or a "eight-word", and the destruction form is shear failure. When the width of the inter-window wall is small, the wall of the window is mostly horizontal, and when the inter-window wall is wider, it is mostly inclined. The two-layer wall is relatively heavy, the layer is light, and the frame column is not damaged.6. The cracks in the wall of the transverse wall at both ends (on the gable wall) are mostly horizontal bending cracks, and the horizontal bending cracks are mainly distributed at the bottom of the wall of each layer, and the damage form of the horizontal bending cracks is the bending and tension failure. When the model is affected by the horizontal earthquake, the spatial structure as a whole will be stressed. under the action of repeated load, the bending moment of the lower end of the middle frame column is not small, because the floor and the upper wall body have obvious constraint effect on the bottom layer column, The lower bending moment is large, the bending moment of the upper part is small, and the internal force can be analyzed by the calculation diagram which is fixedly connected with the lower end of the upper part of the column. The stress variation law of the four longitudinal steel bars in each structural column is basically the same (all stressed or pressed), and the structural column is described as a part of the wall. under the action of horizontal load, the two-layer wall body has both shearing force and bending moment, and when the wall body generates horizontal cracks or oblique cracks, the transmission path of the upper load is changed, and the vertical load transmitted from each wall limb is directly transmitted to the over-beam on the upper part of the frame column, at the same time, the bending moment generated by the wall limb under the action of the horizontal load is not acted on the node of the equivalent concrete frame column and the cross beam, so that the structural column is pulled, the wall limb is locally pressed, and the cross beam at one side of the equivalent concrete frame column is subjected to the pressure effect generated by the bending moment, At this time, a positive bending moment will be generated in the span of the beam, so that the beam is completely different from the general frame beam, so the longitudinal steel bar of the beam shall be properly added at the time of design. The hysteresis curve of this test model is in accordance with the main characteristics of the anti-s shape, and the method of forming the local frame with the equivalent concrete frame column and the cross beam (or ring beam) at the end can obviously improve the anti-side rigidity of the layer. In this test model, the asymmetric crack under the action of repeated load, and according to the asymmetry of the hysteresis curve, the generation of cracks in the two layers is much more, and the damage is more serious. In the wall of each layer, the energy consumption of each layer is increased with the increase of the applied horizontal displacement, and the energy consumption of the two-layer wall body is the largest, the energy consumption is the most, and the two-layer energy dissipation capacity is effectively played. And the ductility of such masonry structures is similar to that of a conventional multi-layer masonry structure.
【学位授予单位】:山东建筑大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU364;TU352.11

【相似文献】

相关期刊论文 前10条

1 刘冰;;浅析砌体结构常见裂缝的原因及防治措施[J];山西建筑;2007年05期

2 国强;;浅谈砌体结构的质量问题[J];河北煤炭;2007年05期

3 焦剑飞;;砌体结构常见裂缝成因的分析与防治[J];内蒙古科技与经济;2008年02期

4 ;《砌体结构理论与新型墙材应用》[J];建筑砌块与砌块建筑;2008年01期

5 黄春梅;;砌体结构常见裂缝的分析与防治[J];黑龙江科技信息;2008年23期

6 薄明军;;砌体结构常见裂缝的分析与防治[J];内蒙古水利;2009年01期

7 郭启芹;张锋;;浅议砌体结构的几个质量问题[J];科技信息;2010年02期

8 李淑清;;砌体结构常见裂缝的分析与防治措施浅析[J];内蒙古科技与经济;2010年08期

9 娄克勇;;砌体结构常见裂缝的分析与防治[J];江西化工;2011年04期

10 高义斌;;砌体结构常见裂缝的成因与防治[J];黑龙江科技信息;2012年08期

相关会议论文 前10条

1 张烁;邓思华;;砌体结构加固的发展及现状概述[A];第六届全国土木工程研究生学术论坛论文集[C];2008年

2 武燕;郭中迎;孟令会;;砌体结构常见的质量问题[A];河南省土木建筑学会2008年学术大会论文集[C];2008年

3 吴玉州;;我国砌体结构的发展过程与发展方向[A];土木建筑学术文库(第11卷)[C];2009年

4 苑振芳;;“现代砌体结构”——我国砌体界同仁不懈的追求[A];现代砌体结构——2000年全国砌体结构学术会议论文集[C];2000年

5 ;前言[A];现代砌体结构——2000年全国砌体结构学术会议论文集[C];2000年

6 孙永民;;某砌体结构住宅楼检测鉴定与加固处理[A];新型砌体结构体系与墙体材料(上册)——工程应用[C];2010年

7 顾祥林;高连玉;;前言[A];砌体结构与墙体材料——基本理论和工程应用——2005年全国砌体结构基本理论与工程应用学术会议论文集[C];2005年

8 顾祥林;彭斌;钱义良;李翔;;从第13届国际砌体大会看砌体结构的研究现状[A];砌体结构与墙体材料——基本理论和工程应用——2005年全国砌体结构基本理论与工程应用学术会议论文集[C];2005年

9 林立岩;;论砌体结构的改进和发展[A];第四届全国结构工程学术会议论文集(下)[C];1995年

10 王亚利;张梦霞;;砌体结构的现状与发展方向[A];土木建筑学术文库(第16卷)[C];2012年

相关重要报纸文章 前9条

1 李超文;加强砌体结构抗震研究保农村住宅平安[N];中华建筑报;2008年

2 陈军建;砌体结构常见裂缝的分析与防治[N];伊犁日报(汉);2008年

3 肖晨辉;砌体结构常见裂缝分析及预防[N];伊犁日报(汉);2006年

4 贵州省兴仁县建设局规划设计室 陈松;试论砌体结构常见裂缝的产生与防治[N];经济信息时报;2006年

5 驻马店市建筑公司 张新恒 沈俊生;砌体结构的质量问题分析[N];驻马店日报;2008年

6 唐山市丰润区建筑工程质量监督站 张春芝;砌体结构墙体裂缝的成因分析及治理[N];建筑时报;2007年

7 焦作建工集团有限公司项目经理 闫军利 谢建军;砌体结构的质量控制[N];中华建筑报;2010年

8 胡必伟;增强砌体结构的抗震性能[N];伊犁日报(汉);2007年

9 中国地震局工程力学研究所博士 孙有为;由汶川地震引发的关于建筑结构设计的思考[N];中华建筑报;2008年

相关博士学位论文 前3条

1 徐秀凤;基于性能的砌体结构加固与修复研究[D];中国地震局工程力学研究所;2015年

2 周强;砌体结构抗震试验及弹塑性地震反应分析[D];哈尔滨工程大学;2012年

3 安栋;加固砌体结构抗震性能及其非平稳地震反应研究[D];天津大学;2013年

相关硕士学位论文 前10条

1 杨少磊;关中地区农村房屋结构安全性研究与评估[D];长安大学;2015年

2 张p,

本文编号:2512706


资料下载
论文发表

本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2512706.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户137ef***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com