数据挖掘在高职院校就业信息管理中的应用研究
[Abstract]:With the increase of the number of graduates in our college, the guidance of employment work and employment direction is becoming more and more heavy. It is necessary to study and develop the employment information management system to enhance the employment level and employment direction of our college graduates. How to use data mining technology to obtain employment guidance information and improve work efficiency is particularly important. This paper mainly studies from the following three aspects: aiming at a large number of data in employment information system, Through data preprocessing, the key information related to employment is obtained, such as comprehensive scores, English grade, computer ability, personality orientation and so on. In view of the shortage of Apriori algorithm producing a large number of candidate sets and repeatedly scanning database, this paper uses the improved algorithm of multidimensional frequent itemsets based on APriori to map the transaction database to a Boolean matrix. The memory is allocated dynamically by layer increments, and the frequent itemsets are found by using vector operation of "and". The candidate set generated by the algorithm has been greatly reduced and applied to the employment management system in colleges and universities, which can shorten the scanning time, save memory cost and improve work efficiency. On the basis of association rule mining, C4.5 decision tree algorithm is used to construct employment decision tree, which classifies graduate students according to computer ability, English grade, comprehensive achievement, political outlook, personality orientation and other decision attributes. In order to improve the employment rate, employment level, improve the current training mechanism and other aspects, provide decision support for managers.
【学位授予单位】:广西大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:G717.38;TP311.13
【参考文献】
相关期刊论文 前10条
1 陈英;何中市;;关联规则在高职学生综合素质测评分析中的应用[J];西南师范大学学报(自然科学版);2011年04期
2 俞有光;钟子发;马捷;;基于等价类的Apriori优化算法[J];计算机工程;2010年22期
3 崔贯勋;李梁;王柯柯;苟光磊;邹航;;关联规则挖掘中Apriori算法的研究与改进[J];计算机应用;2010年11期
4 张春生;宋琳琳;;分段支持度Apriori算法及应用[J];计算机工程与应用;2010年16期
5 肖建国;;论数据挖掘技术在高校就业工作中的应用[J];中国成人教育;2010年08期
6 李宏;李博;吴敏;陈松乔;;一种基于关联规则的多类标分类算法[J];控制与决策;2009年04期
7 武建华;宋擒豹;沈均毅;谢建文;;基于关联规则的特征选择算法[J];模式识别与人工智能;2009年02期
8 庞哈利;高政威;左军伟;卞玉倩;;基于变精度粗糙集的分类决策树构造方法[J];系统工程与电子技术;2008年11期
9 孟凡荣;蒋晓云;田恬;施蕾;申丽君;;基于主成分分析的决策树构造方法[J];小型微型计算机系统;2008年07期
10 何军;刘红岩;杜小勇;;挖掘多关系关联规则[J];软件学报;2007年11期
相关硕士学位论文 前6条
1 沈懿卓;基于数据挖掘技术的高校《就业指导》网络课程建设研究[D];上海师范大学;2011年
2 程代娣;决策树在高职院校毕业生就业工作中应用研究[D];安徽大学;2010年
3 孟媛媛;数据挖掘技术在再就业管理中的应用研究[D];河北大学;2010年
4 李海琼;数据挖掘技术在辽宁大学生就业辅助决策分析系统中的研究与应用[D];沈阳工业大学;2009年
5 刘玉文;数据挖掘在高校招生中的研究与应用[D];上海师范大学;2008年
6 王志浩;数据挖掘在招生信息处理系统中的应用研究[D];山东师范大学;2006年
,本文编号:2159300
本文链接:https://www.wllwen.com/jiaoyulunwen/zhiyejiaoyulunwen/2159300.html