车联网环境下基于UBI的车险费率厘定模式与方法研究
发布时间:2018-04-23 11:17
本文选题:车险费率 + 车联网 ; 参考:《北京交通大学》2015年硕士论文
【摘要】:机动车辆保险作为我国保险市场上的主要财产险险种之一,其保费收入在财产险中一直位居首位。随着车险费率市场化改革的发展以及车联网、大数据等新技术的出现,我国现有的车险费率厘定模式已难以满足新形势的要求,加快实现车险费率差异化已经成为车险市场发展的必然趋势。 本文在分析国内外车险费率厘定相关研究与应用现状的基础上,探讨研究了车联网环境下基于UBI的车险费率厘定模式与厘定方法。对于实现我国车险精准化、个性化定价具有直接指导意义,对于促进我国车险费率市场化改革具有重要的现实意义。本文主要内容如下: (1)分析总结了车险费率厘定的两种基本模式——从车费率模式和从人费率模式以及三种车险费率厘定方法——总平均费率法、分类风险费率法和个体风险费率法。分析指出了现有的技术无法获取驾驶员的驾驶行为数据,因而难以实现车险费率的公平化和差异化,而车联网技术的发展能够为其提供技术支持。在此基础上,提出了基于UBI的车险费率厘定模式,并设计了车险费率厘定方法。其中,基于UBI的车险费率厘定模式遵循“从车+从人”的综合费率模式,该模式的提出除参考传统车辆因素和驾驶员因素之外,还引入驾驶员的驾驶行为表现;基于UBI的车险费率包含了基础费率和费率调整系数两部分。基础费率参照传统费率因子厘定,而费率调整系数则根据驾驶行为评分厘定,车险费率由二者相乘得到。 (2)重点研究了驾驶行为评分模型构建过程。首先,通过对影响驾驶安全基本因素进行分析,构建了驾驶行为评分指标体系。其次,采用熵权——层次分析集成赋权法确定了各指标权重,建立了基于UBI的驾驶行为评分模型。然后,将驾驶行为评分与车险费率之间关联建立挂钩联动模型,给出了车险费率调整系数。最后,通过实证分析表明基于UBI的驾驶行为评分模型比较准确地反映出驾驶员的驾驶风险水平,所提出的车险费率厘定方法能够实现车险费率的公平化、个性化和差异化,具有较高的实际应用价值。
[Abstract]:Motor vehicle insurance is one of the main property insurance types in our country, and its premium income has always been the first in property insurance. With the development of the market-oriented reform of auto insurance rate, the emergence of new technologies such as big data and so on, it is difficult to meet the requirements of the new situation. Speeding up the realization of car insurance rate differentiation has become the inevitable trend of auto insurance market development. Based on the analysis of domestic and international research and application status of vehicle insurance rate determination, this paper discusses the model and method of vehicle insurance rate determination based on UBI under the environment of vehicle network. It has direct guiding significance for the realization of precision and individualized pricing of automobile insurance in our country, and has important practical significance for promoting the marketization reform of car insurance rate in our country. The main contents of this paper are as follows: This paper analyzes and summarizes two basic modes of automobile insurance rate determination: slave rate mode and slave rate mode, and three methods of determining vehicle insurance rate, I. E. total average rate method, classified risk rate method and individual risk rate method. It is pointed out that the existing technology can not obtain driver's driving behavior data, so it is difficult to realize the equalization and differentiation of vehicle insurance rate, and the development of vehicle networking technology can provide technical support for it. On this basis, the model of vehicle insurance rate determination based on UBI is put forward, and the method of vehicle insurance rate determination is designed. Among them, the car insurance rate determination model based on UBI follows the comprehensive rate model of "slave car follower", which not only refers to the traditional vehicle factors and driver factors, but also introduces the driver's driving behavior performance. The auto insurance rate based on UBI includes two parts: basic rate and rate adjustment factor. The basic rate is determined by reference to the traditional rate factor, while the rate adjustment coefficient is determined according to the driving behavior score, and the premium rate of vehicle insurance is obtained by multiplying the two factors. 2) the construction process of driving behavior scoring model is studied. Firstly, by analyzing the basic factors affecting driving safety, the index system of driving behavior score is constructed. Secondly, the weight of each index is determined by entropy weight-AHP integrated weighting method, and the driving behavior scoring model based on UBI is established. Then, the linkage model between driving behavior score and vehicle insurance rate is established, and the adjustment coefficient of vehicle insurance rate is given. Finally, the empirical analysis shows that the driving behavior scoring model based on UBI can accurately reflect the driver's driving risk level, and the proposed method can realize the fairness, individuation and differentiation of the vehicle insurance rate. It has high practical application value.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:F842.634
【参考文献】
相关期刊论文 前10条
1 周晶;;驾驶员动视力在车险定价中的应用研究[J];保险研究;2011年12期
2 谢菁莲;左相国;;中国人民财产保险公司机动车辆保险费率因子的研究[J];法制与社会;2007年12期
3 张连增;段白鸽;;行驶里程数对车险净保费的影响研究——基于公路里程对交通事故损失的影响视角[J];保险研究;2012年06期
4 陆军;郑红武;;汽车OBD系统简述[J];装备制造技术;2012年08期
5 蒋寅;王洁;;车联网业务与保险业务的融合创新[J];电信科学;2012年06期
6 李福林;;疲劳驾驶的危害及预防[J];产业与科技论坛;2013年06期
7 郁佳敏;;车联网大数据时代汽车保险业的机遇和挑战[J];南方金融;2013年12期
8 晋颖;田晓丽;;从供需角度分析车险费率市场化[J];合作经济与科技;2012年01期
9 孟生旺;;广义线性模型在汽车保险定价的应用[J];数理统计与管理;2007年01期
10 康萌萌;;基于广义线性混合模型的经验费率厘定[J];统计与信息论坛;2009年07期
,本文编号:1791721
本文链接:https://www.wllwen.com/jingjilunwen/bxjjlw/1791721.html