新型组合湿地在池塘养殖中的应用研究
本文选题:人工湿地 切入点:池塘养殖 出处:《上海海洋大学》2016年硕士论文 论文类型:学位论文
【摘要】:近年来,人工湿地在池塘养殖中的应用越来越广泛。本研究将生物滤池和水上种植工艺有机结合,研发了一种适于经济植物种植和水质改善的组合湿地,研究了该组合湿地在池塘养殖中的综合应用效果,以期为人工湿地在池塘养殖水质修复中的运用提供更多科学依据。主要研究结果如下:1.设计构建了一种适于经济植物种植和水质改善的组合湿地。湿地主体为长×宽×深为25 m×17 m×1 m的不透水砖砌体,有效容水体积为209 m3,由进水端、种植区和收水端等三部分组成。进水端包括布水槽和卵石滤层。经集水井初步沉淀过滤的养殖废水,通过1台进水提升泵(功率:3-4 KW,扬程:30 m)泵入系统进水管,进水管上方设置有锯齿堰开口布水槽,紧贴配水槽铺设有深度90 cm、粒径8~15 cm卵石滤层。废水经布水槽流入系统,卵石层起到再过滤作用。种植区底部铺设30 cm厚,粒径10~20 mm,空隙率为0.4的轻质陶粒,基质底部均匀安装有6根PVC多孔收水管,管内内置纳米微孔曝气管,长度与多孔PVC管相当,由1台鼓风机(功率:0.75 k W;出气量:110 m3/h)连接进行底部曝气。种植区水面安放尺寸为0.5 m×0.5 m×0.08 m的轻质浮板,每块浮板上留有4个孔径为10 cm的栽培孔,通过栽种盘种植水稻,栽种密度为9.24株/m~2,浮板覆盖率为57.80%。收水端由铺设在基质层下方的收水管加排水沟组成。收水端基质层底部安装有总收水管,并与多孔收水管连接,总收水管与溢流管连通,溢流管位于池壁外侧收水沟中,经处理后的水体经收水沟流入修饰塘。2.研究了组合湿地最佳运行参数。分别研究了不同曝气强度和不同水力负荷对组合湿地水处理能力的影响。结果表明:该组合湿地在水力负荷为0.29m/d~0.58 m/d,气水比为2~4时都可以获得比较好的水处理效果。将其与池塘养殖结合,开展了净化养殖废水的试验研究,在水力负荷为0.58 m/d,气水比为2的条件下,组合湿地对养殖废水中总氨氮(TAN)、总氮(TN)、总磷(TP)和高锰酸盐指数(CODMn)的去除率分别为32.66%~35.57%、59.17%~64.36%、69.45%~74.54%和70.24%~75.43%,出水水质达到渔业水质标准(GB11607)。由于池塘养殖废水中TAN和TN的负荷均不大,并考虑在实际生产中的能耗和成本,确定湿地运行方式为连续进水—滞留反应—连续出水—排空闲置,水力停留时间为1 d,水力负荷为0.58 m/d,气水比为2:1。3.探讨了组合湿地对养殖池塘水质修复效果。2015年6月-10月,选择8口面积为400 m~2的精养池塘,4口与组合湿地连接形成复合池塘养殖系统,2口作为对照塘,研究了组合湿地对精养鱼池水质的调控作用。结果表明:经组合湿地对养殖池塘废水进行循环利用,复合池塘水质得到有效调控,各水质理化参数均值为:透明度(SD)18.42 cm、p H 7.96、溶氧(DO)4.49 mg/L、CODMn 19.87mg/L、TAN 1.03 mg/L、亚硝态氮(NO2--N)0.05 mg/L、TN 5.37 mg/L和TP 1.16mg/L。经统计分析,复合塘的SD、p H、TAN、TN、TP、和CODMn等指标均显著低于对照塘(P0.05)。4.对不同池塘养殖系统养殖效果及氮磷收支进行了研究。结果表明:复合塘主养草鱼收获规格、成活率和产量分别为0.38 kg、71.41%和10054.38 kg/hm~2,均高于对照塘,总产量为13661.06 kg/hm~2,显著高于对照塘;水稻单产为7127.01kg/hm~2,与同时期栽种于稻田中的水稻相比,仅减产23.02%。在对各养殖系统氮磷收支的研究结果表明:复合塘对氮、磷利用率分别为48.11%和25.10%,对照塘仅为32.05%和18.57%;复合塘底泥沉积氮磷比例为21.08%和42.04%,对照塘高达39.48%和59.73%;复合塘干塘时氮磷排放强度为4.91 kg/400m~2和0.99kg/400m~2,而复合塘水体可以重复利用。说明与组合湿地复合形成的复合循环水养殖系统能够有效控制氮、磷输出中主要项目的比例,提高氮、磷利用率,增加养殖产量。还可以效减少底泥氮、磷沉积,降低养殖池塘内源性污染爆发的可能性,提升养殖鱼类成活率,有利于池塘养殖的健康发展。5.探讨了组合湿地—池塘复合养殖模式的综合效益。对各养殖池塘投入与产出的研究结果表明,虽然复合塘人工湿地建造与运行成本较高,电能消耗较多,投入成本较多,但经济效益却优于对照塘。复合塘纯收入为26300元/hm~2,而对照塘仅为14900元/hm~2,较其提高76.51%;综合效益分析结果表明,复合塘综合效果指标为1.05,对照塘为0.84。因此,组合湿地—池塘复合养殖模式能显著提高产值和经济效益,兼具生态效益优势,可为我国渔业转型升级提供一种可持续的池塘养殖新模式。
[Abstract]:In recent years, artificial wetland in pond is used more and more widely. In this study, biological filter and water cultivation technology combined, developed a combination of economic plants and wetland for water quality improvement, comprehensive study of the wetland in pond should be used, in order to provide a more scientific basis for the use of artificial wetland in water pond restoration. The main results are as follows: 1. design a combination of wetland and water quality improvement for economic plants. Wetland body length x width x depth is 25 m * 17 m * 1 M waterproof brick masonry, the effective water holding volume is 209 m3 by the end, water, three parts of planting area and water receiving end. The water inlet end comprises a cloth trough and the gravel filter layer. The aquaculture wastewater collection wells preliminary sedimentation filtration, through 1 sets of water pump (Power: 3-4 KW head: 30 m) pump system Water pipe, water inlet pipe is arranged above the sawtooth weir opening cloth sink, close to the sink with paved with a depth of 90 cm, diameter 8~15 cm gravel filter layer. By distributing tank into the system, the gravel layer filtering effect. The planting area at the bottom of the laying of 30 cm thick 10~20, diameter mm, porosity is 0.4 light ceramsite the 6 PVC collection pipe arranged at the bottom of the porous matrix, pipe built-in nano microporous aeration pipe, and the length of the porous PVC tube, by 1 blowers (Power: 0.75 K W; output: 110 m3/h) connection. The planting area of water placed bottom aeration light floating plate size of 0.5 m * 0.5 m * 0.08 m, each floating plate left planting holes of the 4 aperture is 10 cm, by planting disc planting rice, planting density of 9.24 plants /m~2, the floating plate coverage for 57.80%. water collection end by laying in the matrix layer below the drain. The water pipe and the matrix layer at the bottom end equipped with the total income Water and porous received water pipe connection, the total income and the overflow pipe is communicated with the water pipe, an overflow pipe is located in the wall outside collecting gutter, the treated water in the ditch into the research on the combined optimal operation parameters of.2. modified wetland pond. The effects of different aeration intensity and different hydraulic load on the combination of wetland water treatment capacity respectively. The research results show that the combination of wetland. In the hydraulic loading of 0.29m/d~0.58 m/d, gas and water can get water treatment effect is better than 2~4. Combined with the pond, carried out the test on the purification of aquaculture wastewater, the water load is 0.58 m/d, the ratio of gas and water is 2. The combination of total ammonia wastewater in wetland (TAN), total nitrogen (TN), total phosphorus (TP) and permanganate index (CODMn) and 59.17%~64.36% removal rates were 32.66%~35.57%, 69.45%~74.54%, and 70.24%~75.43%, the water quality can reach the standard of fishery water quality ( GB11607 TAN and TN). Because the pond effluent in load are not large, and consider the cost and energy consumption in the actual production, to determine the operating mode for the continuous inflow Wetland - continuous water retention reaction - emptying, hydraulic retention time was 1 D, the hydraulic load is 0.58 m/d, the combination of Wetland water gas.2015 aquaculture pond water remediation effect in June -10 month is 2:1.3., 8 port area ponds was 400 m~2, and 4 combined to form a composite connected wetland pond culture system, 2 as control pond, fish pond water on the role of fine combination of wetland. The results show that the combination of wetland aquaculture wastewater recycling, composite effective control of pond water quality, the water physicochemical parameters: mean transparency (SD) 18.42 cm, P 7.96 H, dissolved oxygen (DO) 4.49 mg/L, CODMn 19.87mg/L, TAN 1.03 mg/L, nitrite-N (NO2--N) 0. 05 mg/L, TN 5.37 mg/L and TP 1.16mg/L. through statistical analysis, composite SD P H Tang, TAN, TN, TP, and CODMn were significantly lower than that of the control pond (P0.05).4. were studied in different ponds and effects of nitrogen and phosphorus balance breeding system. The results show that the composite Tang Lord grass carp harvest specifications, survival rate and yield were 0.38 kg, 71.41% and 10054.38 kg/hm~2 were higher than that of the control pond, the total yield was 13661.06 kg/hm~2, significantly higher than that of the control pond; rice yield is 7127.01kg/hm~2, compared with the same period planted in paddy fields in rice production, only 23.02%. in the research on nitrogen and phosphorus balance each farming system. The results showed that: composite pond on nitrogen, phosphorus utilization rates were 48.11% and 25.10%, the control pond is only 32.05% and 18.57%; composite pond sediment nitrogen and phosphorus ratio of 21.08% and 42.04%, the control pond up to 39.48% and 59.73%; composite pond dry pond when nitrogen and phosphorus emissions intensity of 4.91 and kg/400m~2 0.99kg/400m~2, while the composite pond water can be reused. The composite recirculating aquaculture system combined wetland can effectively control nitrogen, phosphorus output in the proportion of major projects, improve the utilization rate of nitrogen, phosphorus, increase in aquaculture production. Also can effectively reduce sediment nitrogen, phosphorus deposition, reducing the possibility of the outbreak of endogenous pollution in aquaculture ponds fish, improve the survival rate, there is conducive to the healthy development of.5. pond discusses comprehensive benefit of combination of wetland pond integrated aquaculture model. The study of aquaculture ponds of input and output. The results show that although the composite artificial wetland pond construction and operation cost is high, consume more power, input costs more, but the economic benefit is Tang Tang is better than that of control. The composite net income is 26300 yuan /hm~2, while the control pond is only 14900 yuan /hm~2, compared with the increase of 76.51%; comprehensive benefit analysis results show that the composite integrated pond The effect index is 1.05, while the control pond is 0.84.. Therefore, combined wetland pond compound aquaculture mode can significantly increase output and economic benefits, and has advantages of ecological benefits. It can provide a new sustainable aquaculture mode for China's fishery transformation and upgrading.
【学位授予单位】:上海海洋大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:S959;S964
【相似文献】
相关期刊论文 前10条
1 龙中原;鄢治军;余护;;当前提高池塘养殖效益几项关键措施[J];渔业致富指南;2009年15期
2 郑闽泉,余乃凤,吴德喜,黄信云;山区池塘养殖巴西鲷试验[J];水利渔业;2000年06期
3 范启洪;池塘养殖消毒七要素[J];内陆水产;2000年11期
4 梁强;池塘养殖高背鲫鱼技术[J];云南农业;2000年03期
5 陶国东 ,沈芬华;太湖白鱼的池塘养殖[J];内陆水产;2001年09期
6 蔡敏;鲈鱼池塘养殖注意事项[J];中国水产;2002年09期
7 宋林坤;池塘养殖鲮鱼技术[J];北京农业;2002年10期
8 顾冬郎;池塘淤积的危害及对策[J];江西水产科技;2002年01期
9 蔡敏;鲈鱼池塘养殖注意事项[J];科学养鱼;2002年08期
10 李广联;鲟鱼池塘养殖试验[J];内陆水产;2002年01期
相关会议论文 前9条
1 张重祉;吴志强;王玉彬;邹琦;;茅莲湖垂钓池塘养殖样式试验[A];中国海洋湖沼动物学会鱼类学分会第七届会员代表大会暨朱元鼎教授诞辰110周年庆学术研讨会学术论文摘要集[C];2006年
2 唐章生;曾令方;卢智发;;巴西鲷池塘养殖试验[A];广西水产研究所论文集(2001—2005)[C];2006年
3 刘兴国;徐皓;谷坚;顾兆俊;;池塘生态工程化循环水养殖模式系统研究[A];2010年中国水产学会学术年会论文摘要集[C];2011年
4 吴飞飞;纪建悦;许罕多;;基于LCA方法的对虾池塘养殖碳足迹研究[A];第十三届中国管理科学学术年会论文集[C];2011年
5 刘晃;徐皓;蒋励;;我国水产品池塘养殖氨排放总量的估算[A];全国畜禽和水产养殖污染监测与控制治理技术交流研讨会论文集[C];2008年
6 王广军;谢骏;余德光;李志斐;郁二蒙;王海英;龚望宝;;典型池塘养殖模式介绍及其发展方向[A];2012年中国水产学会学术年会论文摘要集[C];2012年
7 陶玲;李晓莉;张世羊;张春雪;宋景华;李谷;;两种生态沟渠在池塘生态工程中的应用[A];渔业科技创新与发展方式转变——2011年中国水产学会学术年会论文摘要集[C];2011年
8 李海洋;侯冠军;;东至县黄泥湖环境友好型池塘主养草鱼技术模式[A];中国南方十六省(市、区)水产学会渔业学术论坛第二十六次学术交流大会论文集(上册)[C];2010年
9 陈家长;胡庚东;瞿建宏;;太湖流域池塘养殖青虾对环境的影响[A];全国农业面源污染与综合防治学术研讨会论文集[C];2004年
相关重要报纸文章 前10条
1 长江所;构建复合人工湿地—池塘养殖新型生态系统[N];中国渔业报;2007年
2 高物德;池塘养殖石斑鱼效益可观[N];中国渔业报;2012年
3 刘克;池塘养殖鲤鱼提高产量关键步骤[N];中国渔业报;2013年
4 许赞焕;信息化池塘养殖在北京实施[N];中国渔业报;2013年
5 记者 王恩瑞;我省今年将改扩建标准池塘4950亩[N];山西日报;2011年
6 记者 张晓红;自治区首个池塘养殖信息管理平台在我市投用[N];鄂尔多斯日报;2013年
7 中国水产科学研究院;“复合池塘养殖典型模式构建与应用”成果通过鉴定[N];中国渔业报;2014年
8 记者 胡佳逸;老池塘“改”出新生机[N];苏州日报;2011年
9 中国水产科学研究院;鄂尔多斯池塘养殖在线监控系统有效降低养殖风险[N];中国渔业报;2013年
10 特约记者 孙慧武;我国建立首个自主产权池塘养殖生态系统动态模型[N];中国渔业报;2010年
相关博士学位论文 前1条
1 刘兴国;池塘养殖污染与生态工程化调控技术研究[D];南京农业大学;2011年
相关硕士学位论文 前6条
1 彭安德;河口区海参池塘水环境周年变化规律研究[D];大连海洋大学;2015年
2 蒋涛;池塘养殖综合效益评价研究[D];中国海洋大学;2015年
3 高毛林;新型组合湿地在池塘养殖中的应用研究[D];上海海洋大学;2016年
4 杨琳;利用多级生物系统修复池塘养殖环境[D];南京农业大学;2008年
5 郑俊惠;鳜鱼苗种池塘生态培育关键技术研究与示范可行性研究报告[D];华中师范大学;2013年
6 张立通;综合生物修复条件下对虾池塘养殖容量评估模型[D];中国海洋大学;2010年
,本文编号:1575591
本文链接:https://www.wllwen.com/jingjilunwen/jiliangjingjilunwen/1575591.html