当前位置:主页 > 科技论文 > 安全工程论文 >

突出危险工作面瓦斯涌出异常识别与预警系统研究

发布时间:2018-04-22 11:45

  本文选题:煤与瓦斯突出 + 时间序列 ; 参考:《中国矿业大学》2015年硕士论文


【摘要】:论文以原始瓦斯涌出监控数据为研究对象,以数据挖掘的思想对瓦斯涌出的异常状态曲线进行特征分析,结合小波阈值去噪的方法进行趋势分析,建立了基于小波阈值去噪的分级识别预警模型,并通过软件编程技术建立了煤与瓦斯突出识别预警系统。论文的主要研究内容包括以下几个方面:(1)瓦斯涌出时间序列的建立经过分析发现原始瓦斯数据时间间隔不等,存在缺失数据与异常数据;以1分钟为时间间隔、取分钟内瓦斯浓度平均值的方法建立瓦斯涌出时间序列,并通过取前后平均值的的方法进行补充与清理,建立了符合可比性原则的瓦斯涌出时间序列。(2)煤与瓦斯突出的识别预警通过对瓦斯涌出时间序列数字特征的分析,得出瓦斯涌出时间序列的一般性质;通过对瓦斯涌出时间序列的不同状态进行对比分析,得出存在突出危险性状态的特征;在此基础上结合小波阈值去噪的方法进行瓦斯涌出时间序列的动态趋势分析,最终建立基于小波阈值去噪的分级识别预警模型。(3)系统实现与验证采用Client/Server架构、Visual Studio开发平台、Microsoft SQL Server数据库,建立了基于具有可比性的瓦斯涌出时间序列、小波阈值去噪分级识别预警模型的煤与瓦斯突出识别预警系统,并结合实际煤矿瓦斯监控数据进行了验证。
[Abstract]:In this paper, the original monitoring data of gas emission is taken as the research object, the abnormal state curve of gas emission is analyzed by the idea of data mining, and the trend is analyzed by wavelet threshold de-noising method. The classification recognition and warning model based on wavelet threshold denoising is established, and the coal and gas outburst recognition and warning system is established by software programming technology. The main research contents of this paper include the following aspects: 1) the establishment of the gas emission time series. It is found that the original gas data have different time intervals, there are missing data and abnormal data, and the time interval is 1 minute. The time series of gas emission is established by taking the average value of gas concentration in minutes, and the gas emission time series is supplemented and cleaned by the method of taking the average value of gas concentration before and after taking, The identification and early warning of coal and gas outburst is established according to the principle of comparability. The general character of the time series of gas emission is obtained by analyzing the digital characteristics of the time series of gas emission. By comparing and analyzing the different states of gas emission time series, the characteristics of outburst dangerous state are obtained, and on this basis, the dynamic trend analysis of gas emission time series is carried out by combining wavelet threshold de-noising method. Finally, a hierarchical recognition and early warning model based on wavelet threshold denoising is established. The system is implemented and verified. The Client/Server framework is used to develop the Microsoft SQL Server database, and the time series of gas emission based on comparability are established. The early warning system of coal and gas outburst recognition based on wavelet threshold denoising and classifying recognition model is verified with actual coal mine gas monitoring data.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TD713

【参考文献】

相关期刊论文 前7条

1 付华;王雨虹;;基于数据挖掘的瓦斯灾害信息融合模型的研究[J];传感器与微系统;2008年01期

2 樊栓保;国内外煤与瓦斯突出预测的新方法[J];矿业安全与环保;2000年05期

3 赵旭生;邹云龙;;近两年我国煤与瓦斯突出事故原因分析及对策[J];矿业安全与环保;2010年01期

4 石显鑫,蔡栓荣,冯宏,李华;利用声发射技术预测预报煤与瓦斯突出[J];煤田地质与勘探;1998年03期

5 何满潮,谢和平,彭苏萍,姜耀东;深部开采岩体力学研究[J];岩石力学与工程学报;2005年16期

6 肖红飞;彭斌;;基于自记忆模型的煤与瓦斯突出电磁辐射预测研究[J];中国安全科学学报;2009年10期

7 程健;白静宜;钱建生;李世银;;基于混沌时间序列的煤矿瓦斯浓度短期预测[J];中国矿业大学学报;2008年02期

相关博士学位论文 前1条

1 张豫生;基于地质构造的煤与瓦斯突出预测研究[D];辽宁工程技术大学;2006年



本文编号:1787087

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/anquangongcheng/1787087.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2bbae***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com