基于神经网络的盾构推进液压系统控制策略研究
[Abstract]:Shield construction technology has been gradually popularized and applied because of its advantages of fast and high efficiency, high quality and environmental protection, safety and reliability. In recent years, the successful disembarkation of domestic shield and the successful acceptance of overseas tunnel projects show that China has made a historic breakthrough in the field of autonomous research and development of shield. However, the key technologies in shield adaptive design, system integration technology and other fields are still mastered by developed countries such as Europe, America, Japan and so on. Propulsion system is the key part of the adaptive design of shield. The straight forward, attitude adjustment and direction change of shield depend on the coordination of various cylinders in the propulsion system. The pros and cons of propulsion system control are very important to the performance of shield tunneling machine and the quality of tunnel. Therefore, the research on the control strategy of shield propulsion system is of great significance to the development of shield industry in China. Taking shield propulsion system as an object, the response characteristics of propulsion pressure and velocity under different load conditions and the synchronous control performance of multi-group propulsion cylinders are studied in this paper. Firstly, the mechanical structure, hydraulic system and working principle of the shield propulsion system are introduced. Then, the physical model of hydraulic system is established by using AMESim software, and the characteristics of propulsion speed and pressure response and multi-cylinder synchronization are analyzed by using conventional PID control. The simulation results show that the propulsion pressure has a great influence on the velocity. Under the control of conventional PID, the effect of speed control is not satisfactory. In order to solve the problem of mutual interference between propulsion pressure and velocity in shield propulsion system under variable load and variable flow conditions, the control strategy of BP neural network PID is put forward in this paper, and combined with Simulink software, the simulation is carried out. The simulation results show that the stability of BP neural network PID is good, which greatly reduces the overshoot of the pressure and speed of the cylinder during the shield propulsion, and the pressure and speed of the cylinder are overshoot when the load changes. In order to improve the performance of multi-cylinder synchronous control of shield cutter under unbalanced load, a single neuron PID control strategy is proposed. The response characteristics of propulsion system under different control strategies are compared and analyzed. It is concluded that using single neuron PID can greatly improve the synchronization of propulsion cylinder motion under partial load. Finally, the above control strategy is tested and verified on the shield experimental platform, and the experimental data are basically consistent with the simulation results. It is proved that the neural network combined with classical PID control is effective in suppressing the uncertainty and nonlinearity of propulsion system. The theoretical research and experimental analysis of this subject provide a theoretical reference for the design and optimization of shield control system.
【学位授予单位】:河南科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U455.39
【参考文献】
相关期刊论文 前10条
1 胡珉;周胜臣;蒋华钦;;大直径泥水平衡盾构施工参数对管片渗漏影响规律研究[J];现代隧道技术;2016年03期
2 孙金泽;;盾构法施工技术的研究现状与发展前景[J];建筑技术开发;2015年03期
3 侯一民;朱志超;;单神经元PID控制算法在智能车控制系统的应用[J];化工自动化及仪表;2015年02期
4 王梦恕;;中国盾构和掘进机隧道技术现状、存在的问题及发展思路[J];隧道建设;2014年03期
5 洪开荣;陈馈;冯欢欢;;中国盾构技术的创新与突破[J];隧道建设;2013年10期
6 王林涛;龚国芳;杨华勇;侯典清;;基于前馈反馈复合控制的盾构土压平衡控制[J];中南大学学报(自然科学版);2013年07期
7 周文波;;超大直径土压平衡盾构在中心城区公路隧道中的应用技术探讨[J];现代隧道技术;2013年03期
8 孙善辉;陈馈;王助锋;;大直径泥水盾构针对长距离施工的优化[J];隧道建设;2012年02期
9 葛锁良;方唐利;岳胜;;采用免疫BP算法的模糊神经网络PID控制器[J];合肥工业大学学报(自然科学版);2011年05期
10 何川;封坤;;大型水下盾构隧道结构研究现状与展望[J];西南交通大学学报;2011年01期
相关博士学位论文 前2条
1 羌培;超大直径土压平衡盾构最佳施工参数匹配研究[D];上海大学;2015年
2 王林涛;盾构掘进姿态控制关键技术研究[D];浙江大学;2014年
相关硕士学位论文 前9条
1 周春光;BP神经网络PID控制在船舶动力定位系统中的应用[D];大连海事大学;2016年
2 姚乐;复合地层土压平衡盾构掘进适应性评价[D];北京交通大学;2015年
3 陈俊霖;基于单神经元PID的全尾砂膏体制备控制系统仿真研究[D];南华大学;2015年
4 贾玉生;盾构施工近接桩基的影响研究[D];安徽建筑大学;2015年
5 王颖;富水砂卵石地层大直径泥水盾构施工引起的地表沉降研究[D];清华大学;2014年
6 孙备;基于AMESim与Matlab/simulink联合仿真的异步电机矢量控制研究[D];吉林大学;2013年
7 侯典清;盾构推进系统顺应特性及掘进姿态控制研究[D];浙江大学;2013年
8 张晨;基于BP神经网络的PID控制及其在发气仪中的应用[D];华中科技大学;2012年
9 杨霞;盾构机轨迹跟踪控制的研究[D];大连理工大学;2009年
,本文编号:2434499
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2434499.html