当前位置:主页 > 科技论文 > 交通工程论文 >

大客车前碰撞中驾驶员约束系统和损伤防护技术研究

发布时间:2018-04-26 00:25

  本文选题:大客车 + 约束系统 ; 参考:《湖南大学》2014年硕士论文


【摘要】:随着客车行业的快速发展,客车的安全性越来越受到重视。大客车由于缺少强制性的安全措施,所以对驾乘人员的防护技术研究较少。大部分客车开发设计仅限于侧翻和正面碰撞的结构改进优化的研究,对于前碰撞中驾驶员的损伤缺乏深入的研究。大客车发生正碰事故之后,仪表台、转向柱结构水平方向大量后移对驾驶员产生挤压,故驾驶员往往比乘员有更高的伤亡率。因此大客车驾驶员的安全性显得尤其重要。 除了结构,,约束系统的也是减少驾驶员损伤的有效方法。基于对驾驶员损伤的研究,本文主要做了以下工作。 首先,利用hypermesh建立某12米大客车的有限元模型,应用Ls-dyna仿真计算软件对该客车进行正面碰撞模拟,分析了客车模型的能量变化和可靠性。 接着,用MADYMO建立了该大客车驾驶员约束系统的前碰撞模型,模型包含客车驾驶舱、驾驶员座椅、三点式安全带、转向系统、和膝部安全气囊。将有限元客车整车正面碰撞模拟获得的加速度曲线作为MADYMO碰撞模型的输入载荷条件,分析不同的安全带锚点位置和带扣位置对驾驶员的动态响应的影响。 然后,初步设计大客车驾驶员膝部气囊。包括膝部安全气囊的覆盖区域、形状和基本尺寸的设计,折叠过程和方法的设计,气囊的充气过程设计等。分别计算有、无气囊时驾驶员的动力学响应,通过对比,验证了膝部气囊对驾驶员保护效果的有效性。 最后,针对驾驶员下肢保护进行优化。选择膝部安全气囊排气孔面积、气体发生器的质量流速比例、气囊拉带长度、气囊在膝垫安装处的上下位置、气囊点火时刻,安全带的刚度、卷收器的锁止时间、肩带预紧器的预紧量、带扣预紧器预紧力作为研究对象。通过主效应分析,得到膝部安全气囊点火时刻、气囊气体发生器质量流速比例系数、气囊排气孔面积比例系数三个参数对大腿、小腿的损伤响应影响都比较显著,为主效应影响因子,选择这三个参数进行多目标的优化。采用全局多目标路径探索算法HMGP对驾驶员左、右大腿力和左、右小腿胫骨指数进行多目标优化之后,驾驶员的下肢损伤出现了明显的下降。 本文的研究对于大客车驾驶员的保护具有一定的参考价值,设计的膝部气囊和优化方法可以作为借鉴。
[Abstract]:With the rapid development of bus industry, more and more attention has been paid to the safety of passenger cars. Due to the lack of compulsory safety measures, there is little research on the protection technology of drivers. Most of the development and design of passenger cars are limited to the study of structural improvement and optimization of rollover and frontal impact, and lack of in-depth research on the driver's damage in the front collision. After the positive collision of the bus, the horizontal direction of the instrument platform and the steering column will squeeze the driver, so the driver often has a higher casualty rate than the occupant. Therefore, the safety of bus drivers is particularly important. In addition to structure, restraint system is also an effective method to reduce driver damage. Based on the study of driver injury, this paper mainly does the following work. Firstly, the finite element model of a 12m bus is established by using hypermesh, and the frontal impact of the bus is simulated by Ls-dyna software. The energy variation and reliability of the model are analyzed. Then, the forward collision model of the driver restraint system is established by using MADYMO. The model includes the cockpit, driver's seat, three-point seat belt, steering system, and knee airbag. The acceleration curve obtained by the frontal impact simulation of a finite element bus is taken as the input load condition of the MADYMO collision model, and the influence of different seat belt anchoring points and buckle positions on the dynamic response of the driver is analyzed. Then, the preliminary design of the bus driver's knee airbag. Including the knee airbag covering area, shape and basic size design, folding process and method design, airbag aeration process design. The dynamic responses of drivers without airbags are calculated respectively. The effectiveness of knee airbags for driver protection is verified by comparison. Finally, the driver's lower limb protection is optimized. Select the area of the exhaust hole in the knee safety airbag, the mass flow rate ratio of the gas generator, the length of the airbag pulling belt, the upper and lower position of the airbag in the knee pad installation, the ignition time of the airbag, the rigidity of the seat belt, the locking time of the coil taker, The preload of shoulder strap preload and the preload force with buckle are studied. Through the main effect analysis, three parameters, such as the ignition time of the knee airbag, the proportional coefficient of mass velocity of air bag gas generator and the proportional coefficient of air bag exhaust hole area, are all significant to the injury response of thigh and leg. The three parameters are selected for multi-objective optimization. After multi-objective optimization of the left, right thigh force and tibia index of the left and right legs by using the global multi-objective path exploration algorithm HMGP, the lower extremity injury of the driver decreased significantly. The research in this paper has certain reference value for bus driver's protection, and the designed knee airbag and optimization method can be used as reference.
【学位授予单位】:湖南大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U467.14;U491.61

【参考文献】

相关期刊论文 前10条

1 李少波,谢庆生,楚甲良;汽车车身设计方法探讨[J];贵州工业大学学报(自然科学版);1999年06期

2 龚友,刘星荣,葛如海;小型客车整车正面碰撞分析[J];江苏理工大学学报(自然科学版);2000年03期

3 王怀,葛如海,栗艳丽,王晓;网络密度对车辆碰撞仿真的影响与计算效率[J];江苏大学学报(自然科学版);2002年04期

4 冯国胜,贾素梅;轻型车有限元分析及应用[J];机械强度;1996年02期

5 高水德;张绍理;姚常青;;国外客车被动安全研究[J];客车技术与研究;2006年03期

6 王欣;丁良旭;唐京玫;李_";;客车倾翻试验研究[J];客车技术与研究;2008年03期

7 高书娜;邓兆祥;胡玉梅;;车身点焊连接有限元模拟方法研究[J];汽车工程;2008年09期

8 李锵强;李丽君;胡宝洋;;大客车驾驶员有无手部抓握力的伤害对比数值分析[J];农业装备与车辆工程;2013年04期

9 李三红;郭孔辉;赵幼平;郭有利;;商用车摆锤正面撞击试验和仿真[J];中国机械工程;2005年23期

10 杨杏梅;杨济匡;任立海;;基于儿童与成人损伤防护的侧面气囊参数优化[J];中国机械工程;2011年14期



本文编号:1803661

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1803661.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9b95e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com