隧道瑞雷波探测信号去噪与频散曲线提取研究
[Abstract]:The advance geological prediction of tunnel plays a key role in guaranteeing the safety of tunnel construction. Most of the tunnel projects have listed ahead geological forecast as the necessary technical link. Because of the advantages of low cost of equipment, small limit of site, wide application field, rapid and convenient inspection and so on, Leibo exploration leads to the exploration of Leibo. The advance geological forecast of highway tunnel construction has been carried out, and the research of tunnel Rui Leibo frequency dispersion curve forward, signal denoising and purification, frequency dispersion curve extraction, and so on. According to the typical geological anomaly of the tunnel, three categories of seven kinds of models are designed. The tunnel geology is carried out through the derivation and solution of the frequency dispersion equation in Leibo. The study shows that the abnormal band in front of the tunnel face will make the curve of the Leibo frequency dispersion curve "the" character inflection point, and the take-off position of the "it" shape basically reflects the location of the geological anomaly, and the shape of the "it" shape span is closely related to the location of geological anomalies, size scale and nature. The more shallow the abnormality of the mass, the larger the size of the geological anomaly, the more obvious the characteristics of the low speed, the greater the span of the shape deformation. The principle of the application of Leibo exploration technology to the advance geological prediction of the tunnel is analyzed, and the suitable location and data acquisition mode of the exploration in Leibo are put forward in combination with the engineering practice. In the case of bad de-noising, based on the principle of wavelet analysis, we study the de-noising of Leibo signal, and use the two methods of wavelet threshold and wavelet modulus maximum to carry out denoising. Through simulation experiments and engineering examples, it is pointed out that the wavelet threshold method can remove the high frequency random noise well, but it is not sudden to remove the interference wave. The wavelet modulus maxima method not only can effectively remove the random noise, but also can filter the interference wave according to the energy characteristics of Leibo, taking into account the characteristics of the energy characteristics, the propagation speed, the duration and the signal correlation of the other interference waves, which are based on the characteristics of the Leibo and other interference waves. The empirical mode decomposition (EMD) is a new method to purify the Swiss Leibo signal. Through the theoretical analysis and deduction of the basic principle of empirical mode decomposition, the implementation algorithm of EMD purification is established and the program is compiled. The study shows that the exploration record signal is decomposed by EMD, and the intrinsic modal function (IMF) with different physical significance is obtained, so that Rayleigh is made. The wave signal and other interference signals can be distinguished effectively, so that the Leibo signal is refined and verified by an engineering example. It is pointed out that the method has adaptability, stability and reliability. Because the transverse width of the tunnel face is limited, the multi road Leibo technology can not be used. The surface wave based on the two channel technology is applied. The spectral method is used to extract the frequency dispersion curve. According to the lack of high resolution in the deep detection, the improved algorithm and program are put forward. The improved algorithm can improve the resolution of the depth and enhance the recognition of the geological anomaly. With the bottleneck of Fourier transform, a new method of dispersion curve extraction based on wavelet analysis is proposed. The algorithm of extracting dispersion curve by wavelet analysis is established through theoretical deduction and program is compiled. It is shown by experiments and engineering examples that the wavelet transform is a very effective method for calculating the dispersion curve of Leibo. It has the advantages of good purification performance, high reliability, high local resolution and high accuracy of deep detection.
【学位授予单位】:福州大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:U452.11
【相似文献】
相关期刊论文 前10条
1 朱继南,张元春,聂伟荣;多层介质中瑞雷波传播的数学模型[J];南京理工大学学报;2000年06期
2 戴靠山;陈亘;宋学行;潘永东;;二氧化碳地质封存工程防灾监测中瑞雷波敏感性初步分析[J];土木工程学报;2012年S2期
3 杨成林;;瑞雷波变频探测法在工程地质勘查中应用初探[J];河北地质学院学报;1988年02期
4 高文信;;瑞雷波检测技术在强夯块石地基中的应用[J];云南地质;2014年02期
5 刘盛东,张建军;瞬态瑞雷波勘探中的数字处理技术[J];合肥工业大学学报(自然科学版);2001年03期
6 李堂磊;;瑞雷波频率-慢度域的工程应用[J];广东土木与建筑;2009年10期
7 熊章强;张大洲;秦臻;周文斌;;瑞雷波数值模拟中的边界条件及模拟实例分析[J];中南大学学报(自然科学版);2008年04期
8 宋先海;李刚;;瑞雷波多模式叠加耦合机理研究[J];工程勘察;2011年05期
9 晋凤明;栾明龙;;瞬态瑞雷波勘探技术在南水北调配套工程中的应用[J];水利规划与设计;2013年03期
10 赖思静,贾学明,杨建国;软弱地层中瑞雷波传播的数值模拟研究[J];公路交通技术;2005年05期
相关会议论文 前8条
1 王超凡;刘金光;赵永贵;;多道瞬态瑞雷波勘探及其在工程勘察中的应用[A];第六届全国工程地质大会论文集[C];2000年
2 汪利民;夏江海;徐义贤;罗银河;;起伏地表三维高频瑞雷波传播特性研究[A];中国地球物理2013——第二十二专题论文集[C];2013年
3 高玲利;夏江海;潘雨迪;;高频瑞雷波勘探中由泄露模式波引起的模式误判[A];中国地球物理2013——第二十二专题论文集[C];2013年
4 夏宇靖;杨体仁;杨战宁;;瑞雷波勘探方法在煤矿中的应用[A];1992年中国地球物理学会第八届学术年会论文集[C];1992年
5 凡友华;陈晓非;;考虑高阶模的瑞雷波勘探研究:f—k域能量最大模方法[A];中国地球物理.2003——中国地球物理学会第十九届年会论文集[C];2003年
6 万学娟;孙成禹;张玉亮;倪长宽;;介质粘弹性对瑞雷波传播的影响[A];中国地球物理学会第二十四届年会论文集[C];2008年
7 张霄;李术才;张庆松;刘钦;张宁;刘斌;;TSP信号采集质量影响因素的现场试验研究[A];全国地下工程超前地质预报与灾害治理学术及技术研讨会论文集(Ⅰ)[C];2009年
8 林云松;;噪声随深度衰减在各分向的差异及噪声振动的波型性质[A];中国地震学会第三次全国地震科学学术讨论会论文摘要汇编[C];1986年
相关博士学位论文 前2条
1 房曰荣;隧道瑞雷波探测信号去噪与频散曲线提取研究[D];福州大学;2014年
2 罗银河;横向高分辨率瑞雷波数据处理技术研究[D];中国地质大学;2008年
相关硕士学位论文 前3条
1 潘自强;基于瑞雷波理论的动态岩石力学参数反演[D];核工业北京地质研究院;2012年
2 张凯;粘弹性介质瑞雷波模拟及其频散曲线反演[D];中国地质大学;2011年
3 杨丹;施工振源激励的黄土边坡振动特性的测试与分析研究[D];西南交通大学;2008年
,本文编号:2125894
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/2125894.html