当前位置:主页 > 科技论文 > 交通工程论文 >

变截面波形钢腹板组合箱梁剪力滞效应的研究

发布时间:2019-03-08 22:31
【摘要】:近年来波形钢腹板箱梁作为一种新型结构在我国的发展非常迅速,2005年在我国江苏省建成了国内首座波形钢腹板组合箱梁人行天桥,自此以后,我国对波形钢腹板箱梁桥的设计计算理论研究及施工方法的探讨迎来了一个新的春天。国家有关部门成立了相关的自然科学基金,为各科研机构、高校提供相关研究课题。兰州交通大学自2011年承担波形钢腹板箱梁的相关理论课题研究以来,通过实桥实验、理论计算、有限元数值分析,对各项课题进行了详尽研究。 本文基于等截面波形钢腹板组合箱梁剪力滞效应的研究,对变截面波形钢腹板组合箱梁剪力滞效应进行初步探讨,这是一个全新的课题。据相关文献,对等截面混凝土箱梁剪力滞效应的研究已处于比较成熟的阶段,不论是数值模拟还是理论计算,都得出了比较理想的结果,,但对变截面波形钢腹板组合箱梁剪力滞效应的研究还处于萌芽阶段。本文依托国家自然科学基金项目—大跨径波形钢腹板预应力混凝土组合箱梁的力学性能分析与试验研究,项目批准号(51368032),通过数值模拟和理论计算,对变截面波形钢腹板组合箱梁剪力滞效应进行初步探讨。主要工作及相关结论有: (1)按照项目试验梁建立(3m+3m)的连续梁空间有限元模型,在不同工况下,比较等截面波形钢腹板组合箱梁和变截面波形钢腹板组合箱梁的在相同计算截面上的剪力滞系数,发现两者有很大差异,初步得出波形钢腹板组合箱梁的剪力滞系数与截面形式密切相关的结论。 (2)按照桥梁设计规范,分别探究了两车道和三车道550kN荷载作用下箱梁的剪力滞效应,得出荷载横向布置对箱梁剪力滞效应有很大影响的结论,在荷载集度较大的地方,箱梁剪力滞较大,同时发现横隔板对箱梁剪力滞也有比较大的影响。 (3)宽跨比是影响箱梁剪力滞效应的主要因素,本文建立了不同宽跨比的变截面波形钢腹板组合连续箱梁的有限元模型,分别研究了集中荷载和均布荷载作用下,宽跨比对组合箱梁剪力滞效应的影响程度,发现在不同荷载工况下变截面组合箱梁的顶底板剪力滞系数在肋板附近随宽跨比增加而增加,在箱梁中心附近随宽跨比增大而减小。 (4)横隔板的位置(间距)对箱梁剪力滞系数的影响是比较明显的,本文讨论了不同横隔板位置(间距)时箱梁的最大剪力滞系数及位置,得出了横隔板处箱梁剪力滞系数显著减小并对横隔板的最佳位置布置提出了建议。 (5)在不同荷载作用下,梁轴向的应力分布也不同,也即箱梁的剪力滞效应在轴向的分布也不同,这也是确定箱梁最大剪力滞位置的主要依据,在横隔板两侧应力出现明显突变;在集中荷载作用下,最大剪力滞的位置就是加载位置(忽略横隔板的影响时),均布荷载一般都出现在跨中位置(忽略横隔板的影响),并且顶板的剪力滞系数大于底板的剪力滞系数。
[Abstract]:In recent years, as a new type of structure, the corrugated steel web box girder has been developed rapidly in China. In 2005, the first corrugated steel web composite box girder pedestrian footbridge was built in Jiangsu Province, China. In our country, the theoretical research on design and calculation of corrugated steel web box girder bridge and the discussion of construction method have ushered in a new spring. Relevant national departments have set up relevant natural science funds to provide relevant research topics for scientific research institutions and colleges and universities. Since Lanzhou Jiaotong University undertook the theoretical research on corrugated steel web box girder in 2011, through the real bridge experiment, theoretical calculation and finite element numerical analysis, various topics have been studied in detail. Based on the study of shear lag effect of corrugated steel web composite box girder with constant cross section, the shear lag effect of corrugated steel web composite box girder with variable cross section is discussed in this paper. This is a new subject. According to relevant literature, the research on shear lag effect of equivalent section concrete box girder has been in a mature stage. Both numerical simulation and theoretical calculation have obtained more ideal results. However, the study on shear lag effect of corrugated steel web composite box girder with variable cross-section is still in its infancy. In this paper, based on the National Natural Science Foundation of China project-long-span corrugated steel web prestressed concrete composite box girder mechanical performance analysis and experimental research, project approval No. (51368032), through numerical simulation and theoretical calculation, The shear lag effect of corrugated steel web composite box girder with variable cross section is discussed. The main work and relevant conclusions are as follows: (1) the spatial finite element model of (3m) continuous beam is established according to the project test beam, and under different working conditions, the spatial finite element model of continuous beam is established. Comparing the shear lag coefficient between the corrugated steel web composite box girder and the variable section corrugated steel web composite box girder on the same calculated section, it is found that there is a great difference between them. A preliminary conclusion is drawn that the shear lag factor of the corrugated steel web composite box girder is closely related to the cross-section form. (2) according to the bridge design code, the shear lag effect of box girder under two-lane and three-lane 550kN loads is investigated, and the conclusion is drawn that the transverse layout of load should have a great influence on the shear lag effect of box girder, where the load concentration is large, the shear lag effect of box girder under two-lane and three-lane load is investigated. It is found that the shear lag of box girder is larger than that of box girder, and it is also found that the transverse partition plate has a great influence on the shear lag of box girder. (3) the width-span ratio is the main factor that affects the shear lag effect of box girder. In this paper, the finite element model of continuous box girder with variable cross-section corrugated steel webs with different width-span ratio is established, and the concentrated load and the uniform load are studied respectively. The influence of width-span ratio on shear lag effect of composite box girder is studied. It is found that the shear lag coefficient of the top and floor of variable cross-section composite box girder increases with the increase of width-span ratio and decreases with the increase of width-span ratio at the center of box girder under different load conditions. (4) the influence of the position (spacing) of the diaphragm on the shear lag factor of the box girder is obvious. In this paper, the maximum shear lag factor and the position of the box girder with different transverse partition positions (spacing) are discussed. It is concluded that the shear lag factor of the box beam at the transverse partition plate is significantly reduced and some suggestions are put forward for the optimal placement of the transverse partition plate. (5) under different loads, the axial stress distribution of the beam is also different, that is, the axial distribution of shear lag effect of box girder is also different, which is the main basis for determining the maximum shear lag position of box girder. The stress on both sides of the diaphragm is abrupt. Under concentrated loads, the position of the maximum shear lag is the loading position (when the influence of the diaphragm is ignored), and the uniform load usually occurs in the middle of the span (ignoring the influence of the diaphragm). And the shear lag factor of the roof is larger than the shear lag factor of the floor.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U441;U448.213

【参考文献】

相关期刊论文 前10条

1 张士铎 ,丁芸;变截面悬臂箱梁负剪力滞差分解[J];重庆交通学院学报;1984年04期

2 丁南宏;林丽霞;钱永久;;变截面箱梁剪力滞及剪切变形效应近似计算方法[J];铁道科学与工程学报;2011年01期

3 陈宝春,黄卿维;波形钢腹板PC箱梁桥应用综述[J];公路;2005年07期

4 凌云,王建国;一种分析箱梁剪滞效应的广义杂交有限条法[J];合肥工业大学学报(自然科学版);2005年01期

5 罗旗帜;薄壁箱形梁剪力滞计算的梁段有限元法[J];湖南大学学报;1991年02期

6 罗旗帜;刘光栋;杜嘉斌;;薄壁曲线箱梁剪力滞效应的梁段有限元法[J];湖南大学学报(自然科学版);2006年05期

7 刘晓丹;李广军;王静;;薄壁箱形梁桥剪力滞效应的能量变分法研究[J];佳木斯大学学报(自然科学版);2007年01期

8 蔡千典,冉一元;波形钢腹板预应力结合箱梁结构特点的探讨[J];桥梁建设;1994年01期

9 张玉平;李传习;谢建湘;;结构横坡对斜拉桥箱梁剪力滞效应的影响[J];交通科技;2008年05期

10 刘世忠;刘丽;;高墩大跨曲线刚构桥箱梁剪力滞效应研究[J];铁道标准设计;2008年09期



本文编号:2437260

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/2437260.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b4577***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com