基于TDMA数据链的文本分类系统研究与应用
[Abstract]:Wireless equipment is widely used in various fields because of its simple operation, easy to carry, convenient exchange of information and so on. It is an indispensable means of communication for the military. Therefore, wireless equipment is a common command and liaison tool in both military war and disaster relief. In order to transmit data between wireless devices more quickly and reliably, we construct a wireless network system based on TDMA (Time Division Multiple Access, (time Division multiple access) data link. The research content of this paper mainly includes the protocol design and implementation between the service platform and wireless platform, and the research and implementation of the Chinese text classification system on the service platform. The details are as follows: 1) in the wireless network system based on TDMA data link, each type of terminal includes wireless platform and service platform. The wireless platform completes the transmission of terminal information, and the business platform is responsible for processing files and locating information. The management and transmission of audio and video services, in order to ensure the reliable transmission of each service, we designed SWIP (Service Wireless Interface Protocol) protocol. 2) in order to filter and classify the transmission content, The Chinese text classification system needs to be installed on the business platform. Firstly, the Chinese text classification system is introduced, and various modules in the system, such as text preprocessing, feature dimensionality reduction, text representation, classification algorithm and so on, are described in detail. A new Chinese text classification system is proposed, in which the LDA (Latent Dirichlet Allocation) topic model is used to represent the text and the support vector machine (Support Vector Machines, is used to represent the text. SVM) and K-nearest neighbor algorithm (K-nearest neighbor classification) combined with the algorithm KSVM to classify. In order to analyze the performance of the proposed Chinese text classification system, the evaluation criteria such as accuracy, recall rate, F1-measure and so on need to be calculated experimentally. This paper presents two comparative experiments: the analysis of classification effect based on different classification algorithms based on LDA subject model and the analysis of KSVM classification effect based on different text models. By analyzing the experimental data, we can see that the Chinese text classification system based on LDA topic model and KSVM classification algorithm can achieve better classification effect.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TN919.2;TP391.1
【参考文献】
相关期刊论文 前10条
1 陈亮;龚俭;;基于卡方统计的应用协议流量行为特征分析方法[J];软件学报;2010年11期
2 黄秀丽;王蔚;;一种改进的文本分类特征选择方法[J];计算机工程与应用;2009年36期
3 孙铁利;刘延吉;;中文分词技术的研究现状与困难[J];信息技术;2009年07期
4 龙树全;赵正文;唐华;;中文分词算法概述[J];电脑知识与技术;2009年10期
5 邹加棋;陈国龙;郭文忠;;基于图模型的中文文档分类研究[J];小型微型计算机系统;2006年04期
6 申红;吕宝粮;内山将夫;井佐原均;;文本分类的特征提取方法比较与改进[J];计算机仿真;2006年03期
7 周昭涛,卜东波,程学旗;文本的图表示初探[J];中文信息学报;2005年02期
8 李蓉 ,叶世伟 ,史忠植;SVM-KNN分类器——一种提高SVM分类精度的新方法[J];电子学报;2002年05期
9 揭春雨,刘源,梁南元;汉语自动分词实用系统CASS的设计和实现[J];中文信息学报;1991年04期
10 徐辉,何克抗,孙波;书面汉语自动分词专家系统的实现[J];中文信息学报;1991年03期
相关博士学位论文 前1条
1 尚文倩;文本分类及其相关技术研究[D];北京交通大学;2007年
相关硕士学位论文 前3条
1 王国才;朴素贝叶斯分类器的研究与应用[D];重庆交通大学;2010年
2 曹卫峰;中文分词关键技术研究[D];南京理工大学;2009年
3 黄志刚;基于贝叶斯的中文垃圾邮件过滤系统的设计与实现[D];电子科技大学;2007年
,本文编号:2421104
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2421104.html