基于机器视觉的辣椒等级分选研究
[Abstract]:As the world's first fresh pepper production country, the machine for processing the hot pepper has a harvester, a cleaning machine, a color sorter, an enucleating machine and a de-centering machine. Hot pepper and other fractions are selected by the machine vision to identify the size of the pepper and the identification of the disease, and the hot pepper is divided into three levels of large and small, and the red pepper is removed. In order to realize the mechanical automation of the extraction of such fractions, a mechanical scheme based on the machine vision was proposed in this paper to complete the separation of the hot pepper. The results of the study are as follows: (1) By studying the shape and physical characteristics of the pepper, it is concluded that the appearance parameter of the pepper is the fruit length and the width of the pepper, and the evaluation index of the classification of the pepper is determined as the yield of the hot pepper and the efficiency of the separation of the hot pepper. (2) The appearance and size of the pepper are studied by machine vision, and a minimum circumscribed rectangle algorithm is proposed to determine the size of the pepper. The correct rate of identification is 95%, which can meet the requirements of the separation and production. And the color model of the RGB and the HSI is selected to detect the appearance defect of the pepper. (3) According to the shape and size of the pepper and the actual requirement, the experiment platform of the grade of the hot pepper is designed, the mechanism principle and the design parameters of the three parts of the test platform are introduced, and the interference simulation of the whole machine is carried out, and the reliability of the test platform is ensured. And (4) carrying out single factor test and secondary orthogonal rotation regression test on the parameters of the whole machine, and obtaining the optimal parameter combination of the conveying speed and the inclination angle of the conveying belt of the pepper sorting mechanism.
【学位授予单位】:湖南农业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.41;S641.3
【参考文献】
相关期刊论文 前10条
1 王文霞;;辣椒的生产现状及发展[J];北京农业;2014年18期
2 白露露;胡文忠;姜爱丽;刘程惠;刘易伟;;辣椒加工工艺及其设备的应用现状[J];食品工业科技;2014年15期
3 R.Palanivel;P.Koshy Mathews;;Prediction and optimization of process parameter of friction stir welded AA5083-H111 aluminum alloy using response surface methodology[J];Journal of Central South University;2012年01期
4 王福娟;;机器视觉技术在农产品分级分选中的应用[J];农机化研究;2011年05期
5 马艳青;;我国辣椒产业形势分析[J];辣椒杂志;2011年01期
6 韦东兴;陈晓云;徐荣聪;;基于角点检测的图像形状特征提取方法[J];计算机工程;2010年04期
7 王永平;何嘉;张绍刚;张婧;;我国辣椒国内外市场需求现状及变化趋势[J];北方园艺;2010年01期
8 李晴;韩玉珠;张广臣;;国内外辣椒产业现状与发展趋势[J];湖北农业科学;2009年09期
9 司永胜;乔军;刘刚;刘兆祥;高瑞;;基于机器视觉的苹果识别和形状特征提取[J];农业机械学报;2009年08期
10 徐小万;李颖;王恒明;;中国辣椒工业的现状、发展趋势及对策[J];中国农学通报;2008年11期
相关博士学位论文 前1条
1 郝敏;基于机器视觉的马铃薯外部品质检测技术研究[D];内蒙古农业大学;2009年
相关硕士学位论文 前3条
1 鲁永萍;基于机器视觉的马铃薯外部品质检测与分级[D];内蒙古农业大学;2013年
2 田绪顺;干制红枣机器视觉分级分选装置机械系统的设计[D];石河子大学;2013年
3 马姝琳;大豆等农产品在线检测技术[D];重庆大学;2006年
,本文编号:2460179
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2460179.html