节理岩体结构面空间表征及其模型优化
[Abstract]:Rock mass is a rock mass structure composed of rock blocks and the structural planes of separate cut rock blocks. The rock mass structure mask has the characteristics of different size, different occurrence and different shape, so the rock mass presents discontinuous, heterogeneous and anisotropic mechanical properties. A large number of engineering practices can show that the geometric and physical characteristics of the structural plane play a key role in controlling the deformation and failure of rock mass and have an important effect on the stability of engineering rock mass during the excavation of tunnel cavern. The stability analysis of engineering rock mass is a very important practical problem, such as the excavation of underground caverns, the construction of tunnels, the opening of canal channels, the construction of roads, bridges, dams in Gaoxia, the repair of deep valleys and open pit mining, etc. These projects need to analyze the stability of rock mass. With the development of computer, numerical simulation method has a unique advantage in analyzing the stability of rock mass. How to set up the analysis model of rock mass structure, on the basis of obtaining a large amount of information of structural plane, to carry on the comprehensive representation and simulation, and to take into account the influence factors of the physical parameters of the structural plane. A more accurate three-dimensional structural plane space model of rock mass tunnel is established, and the interaction between structural plane and excavated surface is reasonably analyzed, and the key blocks that affect the stability of rock mass are searched. It is a key problem in the stability study of tunnel excavation. On the basis of reading a lot of literature, summarizing the methods of structural plane research and rock mass stability analysis, based on the digital photogrammetry method, this paper uses the Dilloni triangulation method to reconstruct the three-dimensional mesh of the structural plane surface. Using the established surface triangular mesh model, the structural surface opening degree is simulated, and the disk model of the structure surface is optimized. A new method of 3D roughness characterization, (surface area ratio, SAR);, is proposed. On the basis of verifying the roughness coefficient, the empirical estimation of the mechanical parameters in the structure plane is carried out. The main work is as follows: firstly, the acquisition of the structural plane is carried out by using the digital photogrammetry system. The surface morphology of the exposed part of the structure surface is used to reflect the 3D spatial form of the whole structure surface, and the data of the exposed part are obtained by using ShapeMetriX3D system. On this basis, Delaunay triangulation method is applied to reconstruct the surface of the structure surface, and the surface shape of the structural plane is reflected by the three-dimensional triangular mesh. Secondly, considering the deficiency of two-dimensional roughness in characterizing the roughness of structural surface, a specific surface area method (surface area ratio, SAR),) is proposed on the basis of 3D reconstruction of structural surface. The large roughness is reflected by the ratio of the mesh area to the fitting area of the structural surface. According to the measurement of the field structure surface, the roughness coefficient is calculated by the modified straight edge method, and the correlation between JRC and SAR is analyzed. Thirdly, according to the reconstructed structure surface, the average opening degree is calculated, and the equivalent opening degree is used as the opening degree of a single structural plane for computer simulation. The Barton formula is used to estimate the mechanical parameters of the structural plane. Finally, combining with the concrete engineering example, using ShapeMetriX3D system to collect the information of the structural plane on the spot, the real information of the structural plane is represented by the network simulation method of the structural plane, the 3D structural plane model of the rock mass tunnel is established, and the key blocks are searched by the application program. The stability of rock mass is analyzed, and compared with the actual engineering, the validity of the program is verified and the results are shown.
【学位授予单位】:东北大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TU45
【相似文献】
相关期刊论文 前10条
1 蒋建平,罗国煜;土坡中的优势结构面分析[J];工程地质学报;2000年04期
2 谭冬生;李学潮;张忠平;;优势结构面理论在某高边坡稳定性分析中的应用[J];路基工程;2006年02期
3 徐佳;张勤;吴继敏;;功效系数法在确定岩体优势结构面中的应用[J];岩土工程学报;2008年04期
4 周莲君;彭振斌;何忠明;彭文祥;;结构面剪切特性的试验与数值模拟分析[J];科技导报;2009年04期
5 李永红;彭振斌;杨明;李俊;;三维锯齿型结构面直剪特性分析[J];科技导报;2009年11期
6 王川婴;钟声;孙卫春;;基于数字钻孔图像的结构面连通性研究[J];岩石力学与工程学报;2009年12期
7 沈明荣;张清照;;规则齿型结构面剪切特性的模型试验研究[J];岩石力学与工程学报;2010年04期
8 司富安;贾国臣;高玉生;高义军;鞠占斌;;不均匀及不连续结构面抗剪强度模拟试验研究[J];水利水电技术;2010年02期
9 宋博学;俞缙;林从谋;;穿越位移不连续结构面的随机地震波模拟[J];武汉理工大学学报;2010年09期
10 王观石;胡世丽;李贵荣;李世海;;爆破地震波在结构面的传播特性与结构面倾角判断[J];岩石力学与工程学报;2010年09期
相关会议论文 前10条
1 杜时贵;程俊杰;王思敬;;岩体的基本构成——结构面和结构体[A];第六届全国工程地质大会论文集[C];2000年
2 吉锋;石豫川;冯文凯;;一种新型的结构面起伏形态测量工具——接触打孔器的研制[A];第三届全国岩土与工程学术大会论文集[C];2009年
3 吉锋;石豫川;冯文凯;;结构面质量分级体系及力学参数研究[A];第三届全国岩土与工程学术大会论文集[C];2009年
4 陈庆寿;何思为;;含两组结构面模型的超动态应变测试[A];第三届全国岩石动力学学术会议论文选集[C];1992年
5 孙强;李曼;杨继红;;西南某地结构面的右行形成机制[A];第十届全国岩石力学与工程学术大会论文集[C];2008年
6 张佳川;;节理岩体按结构面性质分区的聚类分析与模糊综合评判[A];全国第三次工程地质大会论文选集(下卷)[C];1988年
7 沈明荣;;不规则齿形结构面的力学特性研究[A];第二届全国青年岩石力学与工程学术研讨会论文集[C];1993年
8 沈俊;夏正中;;预锚结构面抗剪性能研究[A];重庆岩石力学与工程学会第一届学术讨论会论文集[C];1992年
9 张龙波;沈明荣;;结构面在加载和卸载条件下的强度特性研究[A];第八届全国工程地质大会论文集[C];2008年
10 陈沅江;吴超;傅衣铭;;软岩结构面流变特性研究[A];中国化学会、中国力学学会第九届全国流变学学术会议论文摘要集[C];2008年
相关博士学位论文 前10条
1 赵家成;非连续结构面破坏过程试验研究[D];中国地质大学;2013年
2 杨明;岩体结构面力学特性及其锚固效应的数值计算研究[D];中南大学;2009年
3 吉锋;顺层边坡硬性结构面强度参数及工程技术研究[D];成都理工大学;2008年
4 赵宇飞;加锚结构面剪切特性及锚固岩体综合力学模型研究[D];中国水利水电科学研究院;2013年
5 孙书勤;峨眉山玄武岩结构面类型及其工程效应研究[D];成都理工大学;2011年
6 范雷;鄂西志留系裂隙砂岩岩体结构特征及其力学参数研究[D];中国地质大学;2009年
7 王小江;岩石结构面力学及水力特性实验研究[D];武汉大学;2013年
8 宋琨;花岗片麻岩体渗透特性及水封条件下洞库围岩稳定性研究[D];中国地质大学;2012年
9 何刘;交通工程边坡在振动力作用下行为特征研究[D];西南交通大学;2013年
10 黄磊;测线取样法引起的岩体结构面几何偏差纠正[D];中国地质大学;2014年
相关硕士学位论文 前10条
1 巫裕斌;薄层破碎硬质岩隧道(群)施工方法及支护方式研究[D];西南交通大学;2015年
2 王檀;不同条件口孜东矿采区行人上山顶板离层的数值模拟[D];安徽建筑大学;2015年
3 陈镜丞;硬性结构面对深埋硬岩隧道开挖稳定性影响分析[D];长沙理工大学;2014年
4 李俊杰;贵州省印江县革底滑坡成因机制研究[D];成都理工大学;2015年
5 朱海明;旭龙水电站左坝肩抗力体劈理型边界提取及稳定性初步分析[D];成都理工大学;2015年
6 唐川;攀枝花朱矿南帮岩质边坡稳定性分析及治理措施研究[D];成都理工大学;2015年
7 李骏;叶巴滩水电站坝址区岩体工程适宜性研究[D];成都理工大学;2015年
8 张磊;深圳抽水蓄能电站地下厂房围岩稳定性研究[D];成都理工大学;2015年
9 屈鹏程;层状碎裂结构隧道围岩稳定性分析及防灾对策研究[D];成都理工大学;2015年
10 李鸣辉;地震作用对岩质高边坡动力影响分析[D];重庆交通大学;2015年
,本文编号:2297031
本文链接:https://www.wllwen.com/kejilunwen/sgjslw/2297031.html