当前位置:主页 > 科技论文 > 石油论文 >

游梁式抽油机自顶向下设计与联合仿真研究

发布时间:2018-07-15 11:58
【摘要】:游梁式抽油机在现有采油机械中占绝大多数,针对其传统设计方法(自底向上)效率低,而采用自顶向下设计方法设计游梁式抽油机研究较少,因此本文根据抽油机基本参数信息,对游梁式抽油机进行自顶向下参数化设计,为减少设计成本,缩短产品设计周期具有重要意义。针对抽油机是个多构件的系统,其在工作过程中,抽油机的关键部件,尤其是连杆易在循环交变载荷下发生疲劳破坏。目前对抽油机关键部件进行疲劳预测一般采用静态施加载荷方法,这种方法分析不够准确,与实际不相符。因此如何使用动态方法对抽油机关键部件进行疲劳寿命研究,对其疲劳预测具有重要意义。本文以一种游梁式抽油机为研究对象,对其进行了自顶向下设计和联合仿真研究,具体研究工作及成果,主要体现有以下几个方面。(1)以Creo软件为平台,运用自顶向下的设计方法对该型游梁式抽油机进行参数化设计。针对抽油机结构复杂性,对其划分为四大模块。对每个模块建立子骨架模型,以此为中间枢纽传递顶层设计信息,保证了整个设计过程中数据紧密联系。采用此设计方法实现了模型快速设计效果,缩短了产品设计周期,使游梁式抽油机的设计效率大幅提升。(2)利用Mathcad参数计算与Creo之间参数传递完成了游梁式抽油机设计计算和模型设计。此设计方法从游梁式抽油机参数计算到其装配模型的形成,全过程若有参数计算,则其结果就能及时传递到几何模型上,且快速又准确,此设计方法弥补了传统设计计算的不足,促进了设计效率的提高。(3)基于AMESim软件中建立了游梁式抽油机系统的1D仿真模型,仿真分析了悬点运动和动力特性,将仿真得出的悬点位移、速度、加速度和载荷结果,与理论计算进行了对比分析,验证了其准确性。(4)在Motion软件中建立了游梁式抽油机的多刚体动力学模型,并基于AMESim 1D和Motion 3D联合仿真的方法,对游梁式抽油机进行了动力学仿真分析,得到了驴头悬点的运动规律以及抽油机四连机构各铰接处受力、减速器齿轮啮合力等主要动态作用力的时间历程。(5)对连杆柔性化的游梁式抽油机进行了刚柔耦合动力学仿真分析,得到了连杆的固有特性,表明了连杆本体中部固有振幅最大。通过将刚柔耦合动力学仿真结果与刚体动力学仿真结果对比分析,发现连杆柔性化之后能够更加真实地反映出连杆系的动态特性。对连杆进行应力、变形分析表明,连杆上的最大应力处位于连杆杆体结构过渡圆角处,最大变形发生在连杆结构两端部。(6)利用刚柔耦合动力学计算的结果,得出连杆的模态参与因子,将模态参与因子与模态进行线性叠加,得到连杆的载荷历程,并将其作为疲劳分析输入数据,利用Virtaul.Lab的Durability模块对连杆进行了系统级疲劳分析,获得准确地的连杆疲劳寿命值和损伤分布,确定了连杆疲劳损伤位置。研究结果可为抽油机关键部件疲劳寿命研究提供重要参考。此方法也为相似机械产品开发早期的疲劳损伤位置和疲劳寿命的预测提供了参考,同样对其它相关领域很实用。
[Abstract]:The beam pumping unit occupies an overwhelming majority in the existing oil production machinery. In view of its traditional design method (bottom up), the efficiency is low, and the design of beam pumping unit with the top down design method is less. Therefore, based on the basic parameter information of the pumping unit, this paper makes a top-down parameterized design for the beam pumping unit, in order to reduce the design. It is of great significance to shorten the design cycle of the product. In the process of the pumping unit, the key components of the pumping unit, especially the connecting rod, are prone to fatigue damage under cyclic alternating load. At present, the fatigue prediction of the key components of the pumping unit is used as a static loading method, this method is analyzed. It is not accurate enough and does not agree with the actual situation. So how to use dynamic method to study the fatigue life of the key components of the pumping unit is of great significance to its fatigue prediction. In this paper, a beam pumping unit is used as the research object. The next few aspects. (1) take the Creo software as the platform, use the top-down design method to design this type of beam pumping unit. According to the complexity of the pumping unit, it is divided into four modules. A subframework model is set up for each module to pass the top layer design information for the middle hub and ensure the number of the whole design process. According to the close connection, the design method of the model can be realized quickly, the design cycle of the product is shortened and the design efficiency of the beam pumping unit is greatly improved. (2) the design calculation and model design of the beam pumping unit are completed by Mathcad parameter calculation and Creo parameter transfer. The design method is from the beam pumping unit parameters. To calculate the formation of the assembly model, if the whole process is calculated, the result can be transferred to the geometric model in time, and it is fast and accurate. The design method makes up the shortage of the traditional design and improves the design efficiency. (3) based on the AMESim software, the 1D simulation model of the beam pumping unit is built. The suspension point motion and dynamic characteristics are analyzed. The results of the suspended point displacement, velocity, acceleration and load are compared with the theoretical calculation. The accuracy is verified by the theoretical calculation. (4) the multi rigid body dynamic model of the beam pumping unit is established in the Motion software, and the beam pumping is based on the joint simulation of AMESim 1D and Motion 3D. The dynamic simulation analysis of the oil machine is carried out. The motion law of the hanging point of the donkey head and the time history of the main dynamic forces, such as the force of the hinge joints at the four linkage mechanism of the pumping unit, the gear meshing force of the reducer, etc.. (5) the rigid flexible coupling dynamics simulation analysis is carried out on the flexible beam pumping unit of the connecting rod, and the inherent characteristics of the connecting rod are obtained. It shows the maximum inherent amplitude in the central part of the connecting rod. By comparing the simulation results of rigid flexible coupling dynamics with the simulation results of rigid body dynamics, it is found that after the connecting rod is flexible, the dynamic characteristics of the connecting rod system can be more truly reflected. The stress on the connecting rod and the deformation analysis show that the maximum stress on the connecting rod is located in the rod body. The maximum deformation occurs at the two ends of the connecting rod structure at the transition angle of the structure. (6) the modal participation factor of the connecting rod is obtained by the results of the rigid flexible coupling dynamic calculation. The modal participation factor and the modal are linear superimposed, and the load history of the connecting rod is obtained, and it is used as the fatigue analysis input data, and the Durability module of Virtaul.Lab is used. The fatigue life value and damage distribution of the connecting rod are obtained, and the fatigue damage position of the connecting rod is determined. The results can provide an important reference for the study of the fatigue life of the key components of the pumping unit. This method also predicts the early fatigue damage position and fatigue life of the similar mechanical product. For reference, it is also useful for other related fields.
【学位授予单位】:西南石油大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TE933.1

【参考文献】

相关期刊论文 前10条

1 高海军;孙文磊;谭远华;;基于刚柔耦合的抽油机多体系统动力学分析[J];机械设计与制造;2015年12期

2 方吉;兆文忠;朴明伟;;基于模态叠加法的焊接结构疲劳寿命预测方法研究[J];振动与冲击;2015年05期

3 吕国林;褚学宁;储德新;沈靖;刘相振;;自顶向下设计的多骨架建模方法[J];计算机辅助设计与图形学学报;2015年03期

4 崔娜娜;吴娟;崔海云;;基于Motion/AMESim的某变载机构的建模与仿真分析[J];液压气动与密封;2013年09期

5 何畏;王向涛;孙宇;王钰文;;抽油机连杆的力学分析及结构改进[J];天然气与石油;2013年03期

6 骆清国;王旭东;张更云;杨良平;冉光政;;变工况下的发动机连杆动态应力与疲劳损伤分析[J];车用发动机;2012年04期

7 彭谦;马晨光;杨雪梅;范滢;;线性模态分析中的参与因子与贡献因子[J];电网技术;2010年02期

8 郑满圈;;游梁式抽油机运动规律的多体动力学分析[J];石油机械;2006年05期

9 王宏伟;邢波;骆红云;;雨流计数法及其在疲劳寿命估算中的应用[J];矿山机械;2006年03期

10 任尊松,孙守光,李强,毛娟;构架结构振动与动态应力仿真研究[J];机械工程学报;2004年08期

相关博士学位论文 前2条

1 徐金超;游梁抽油机正扭矩调制方法及关键技术[D];中国石油大学(华东);2014年

2 缪炳荣;基于多体动力学和有限元法的机车车体结构疲劳仿真研究[D];西南交通大学;2007年

相关硕士学位论文 前10条

1 蒋帆;游梁式抽油机尾部支撑结构的分析研究[D];兰州理工大学;2016年

2 常娟;基于NX自顶向下的后装压缩式垃圾车设计技术研究[D];安徽理工大学;2015年

3 徐丛国;挖掘机回转马达总成技术研究及回转系统机液联合仿真[D];贵州大学;2015年

4 谢宁;振动模态对高速列车车体疲劳寿命的影响分析[D];西南交通大学;2015年

5 杨保贵;游梁式抽油机虚拟样机测试及有限元仿真分析[D];长安大学;2015年

6 罗愿欣;油气缓冲器动态和静压曲线仿真计算及研究[D];西安工业大学;2015年

7 王继明;悬臂式掘进机机液联合仿真研究[D];沈阳建筑大学;2015年

8 邢金玲;柔性机构在常规型抽油机中的应用与研究[D];兰州理工大学;2014年

9 邓朋儒;基于多体动力学的铁路斜拉桥车—桥耦合分析及疲劳损伤评估[D];中南大学;2014年

10 易yN;颚式破碎机自顶向下的参数化设计及其有限元分析[D];太原理工大学;2014年



本文编号:2123999

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2123999.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户51b00***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com