钩爪式四足爬壁机器人
发布时间:2018-04-21 18:50
本文选题:钩爪脚掌 + 爬壁机器人 ; 参考:《南京航空航天大学》2017年硕士论文
【摘要】:自然界中的生物可以通过足端的钩爪实现竖直面自由攀爬以及与腿部倒刺结构发生锁合实现在倒置的表面自由爬行。生物的这种独特的能力可以被应用到爬壁机器人领域,以提高机器人在粗糙的竖直表面的爬行能力。钩爪式爬壁机器人作为特种机器人的重要分支,具有功耗低、噪声小、附着稳定、脱附简单等优秀特性,对自然界中常见的粗糙的、不规则的、布满灰尘的表面有着较强的适应能力。本文借鉴生物突出的运动能力与附着特性,研制了钩爪式爬壁机器人。论文首先建立了钩爪与粗糙表面的附着模型,并研究影响钩爪在粗糙表面附着能力的因素,理解钩爪附着方式。基于提出的参考钩爪附着部件设计原则,规避目前采用先进的形状沉积技术设计柔性附着部件的方式,以简易的锁合方式设计了柔性钩爪脚掌结构,并通过实验验证所设计柔性钩爪脚掌的优秀的附着性能。基于柔性钩爪脚掌的附着方式,结合生物在壁面爬行时常采用的匍匐姿态和爬行步态,研制了钩爪式四足爬壁机器人机身结构,并为其规划了周期性多功能的对角爬行步态和高效的足端轨迹,以仿真的形式验证了结构设计的合理性和步态功能的可行性。以安全、高效与简洁为原则开发了机器人控制系统,通过控制系统的上位机与机器人交互通讯对机器人运行状态进行监控,并以反馈控制的方式提高了机器人的控制精度。最终通过实验测试了本文所设计的钩爪式四足爬壁机器人对于粗糙表面的适应范围,以及不同表面的极限爬行速度与极限负载能力,并验证了机器人可以实现在粗糙的竖直表面前进、转弯、后退的基本功能,以及上位机反馈控制结果的可靠有效。
[Abstract]:The natural creatures can climb the vertical face freely by the hook claw of the foot and crawl freely on the inverted surface by locking the inverted leg structure. This unique ability of biology can be applied to the field of wall climbing robots to improve the crawling ability of robots on rough vertical surfaces. As an important branch of special robot, hook-and-claw climbing robot has the advantages of low power consumption, low noise, stable adhesion, simple desorption and so on. Dusty surfaces have a strong adaptability. In this paper, a hook-claw type wall climbing robot is developed based on the outstanding motion ability and attachment characteristics of organisms. In this paper, the adhesion model between the hook claw and the rough surface is established, and the factors that affect the adhesion ability of the hook claw on the rough surface are studied, and the adhesion mode of the hook claw is understood. Based on the design principle of reference hook claw attachment part, the flexible hook claw foot structure is designed by a simple locking method to avoid the design of flexible attachment parts by using advanced shape deposition technology at present. The excellent adhesion performance of the flexible claw paw is verified by experiments. Based on the attachment mode of flexible hook claw foot, combined with the creeping posture and crawling gait, the fuselage structure of hook-and-claw four-legged climbing robot was developed. The diagonal crawling gait with periodic multifunction and high efficient foot trajectory are planned. The rationality of structural design and the feasibility of gait function are verified by simulation. Based on the principles of safety, efficiency and simplicity, the robot control system is developed. The robot's running state is monitored by the communication between the upper computer and the robot, and the control precision of the robot is improved by the way of feedback control. Finally, the adaptive range of the hook-and-claw four-legged climbing robot for rough surface, the limit crawling speed and the ultimate load capacity of different surfaces are tested through experiments. It is verified that the robot can achieve the basic functions of advancing, turning and retreating on the rough vertical surface and the reliability and effectiveness of the feedback control results of the upper computer.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242
【参考文献】
相关期刊论文 前3条
1 王田苗;陈殿生;陶永;李剑;;改变世界的智能机器——智能机器人发展思考[J];科技导报;2015年21期
2 吉爱红;顾伟;汪中原;倪勇;王周义;戴振东;;壁虎在垂直的不同材料表面的运动与附着行为研究[J];中国机械工程;2014年04期
3 孙久荣;戴振东;;仿生学的现状和未来[J];生物物理学报;2007年02期
,本文编号:1783690
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1783690.html