当前位置:主页 > 科技论文 > 自动化论文 >

外骨骼电机伺服驱动系统设计

发布时间:2018-11-24 08:17
【摘要】:医疗外骨骼机器人是一款用于辅助下肢截瘫患者恢复行走能力的康复机器人,多采用无刷伺服电机为其动力源。由于外购电机驱动存在扩展性不强、通信复杂、价格昂贵、可控程度低等问题,本文围绕驱动在外骨骼控制中所需求的控制模式,开发了一套外骨骼专用的伺服驱动系统。主要的研究内容如下:实现了基于矢量控制方法的外骨骼无刷电机伺服控制方案。分析了矢量控制基本原理,简化了无刷电机的数学模型,研究了数字化空间电压矢量调制的实现方法。综合伺服驱动的位置三环闭环控制原理,在Simulink中搭建了伺服控制仿真模型,为关键问题的研究以及实际物理平台的搭建提供理论基础。针对外骨骼系统中采用电机驱动的关键技术提出了解决方案。在电流控制中,通过减小空间矢量调制(SVPWM)周期,解决了由于电机绕组电感过小产生的相电流波动问题;在速度控制中,引入了基于M法的锁相环速度估算方法,提高了低速下的稳定性;在位置跟随中,对点到点(PTP)梯形位置插值的问题,实现了一种简易的PTP决策方法使得每个点到点的位置插值可被重新规划,对多点插值问题,实现了基于Hermite三次多段的位置、速度、时间(PVT)插值方法,解决了多点插值的轨迹跟随问题;在外骨骼的启动定位中,提出了一种霍尔传感器辅助定位的方法,解决了预定位启动控制失步问题。搭建了电机驱动的实际物理平台和软件平台。在硬件上,对功率驱动电路、电流采样电路、多级串联BUCK降压电路、过流过压检测电路进行了分析与设计,设计了驱动器断电三相线短接电路,使得断电以后的电机进入高阻尼状态,提高了外骨骼使用的安全等级。在软件上,对伺服驱动系统的软件框架进行了解耦,实现了基于SVPWM的矢量控制程序达到了励磁电流和力矩电流的解耦控制。在通信上,设计了基于CAN通信的对象字典通信协议,使得外骨骼与节点的通信更加灵活。在重量、体积、定位精度、响应速度上与外购驱动器构成的节点控制器进行了测试比较,并在外骨骼的实际系统上进行带载测试,表明了本文设计的驱动器方案完全可以替代外购点击驱动。并且由于驱动针对外骨骼自制,提高了外骨骼系统的可控性、降低了外骨骼的开发成本,提升了外骨骼自主研发的能力。
[Abstract]:Medical exoskeleton robot is a kind of rehabilitation robot used to assist paraplegia patients to recover walking ability. Most of them use brushless servo motor as their power source. Due to the problems of low expandability, complex communication, expensive price and low controllability, a special servo drive system for exoskeleton is developed around the control mode required by the driver in exoskeleton control. The main research contents are as follows: the servo control scheme of exoskeleton brushless motor based on vector control method is realized. The basic principle of vector control is analyzed, the mathematical model of brushless motor is simplified, and the realization method of digital space voltage vector modulation is studied. Based on the position three-loop closed-loop control principle of servo drive, the simulation model of servo control is built in Simulink, which provides the theoretical basis for the research of key problems and the construction of practical physical platform. A solution to the key technology of motor drive in exoskeleton system is presented. In current control, the phase current fluctuation caused by the small winding inductance of the motor is solved by reducing the space vector modulation (SVPWM) period. In the velocity control, the velocity estimation method of PLL based on M method is introduced to improve the stability at low speed. In the position following, a simple PTP decision method is implemented for the point to point (PTP) trapezoidal position interpolation. The position interpolation of each point to point can be reprogrammed. The position, speed and time (PVT) interpolation method based on Hermite cubic multiple segments is implemented, and the trajectory following problem of multipoint interpolation is solved. In the starting location of exoskeleton, a Hall sensor assisted positioning method is proposed, which solves the out-of-step problem of preset start control. The actual physical platform and software platform of motor drive are built. In hardware, the power drive circuit, current sampling circuit, multistage series BUCK step-down circuit and overcurrent overvoltage detection circuit are analyzed and designed. After power failure, the motor into a high damping state, improve the use of exoskeleton safety level. In software, the software framework of servo drive system is decoupled, and the vector control program based on SVPWM achieves decoupling control of excitation current and torque current. In communication, the object dictionary communication protocol based on CAN communication is designed, which makes the communication between exoskeleton and node more flexible. The weight, volume, positioning accuracy and response speed are tested and compared with the node controller made up of external actuators, and the load test is carried out on the actual system of exoskeleton. It shows that the driver scheme designed in this paper can completely replace the external click drive. Because the drive is aimed at exoskeleton, it improves the controllability of exoskeleton system, reduces the cost of exoskeleton development, and improves the ability of exoskeleton self-development.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242

【参考文献】

相关期刊论文 前10条

1 邱静;程洪;过浩星;;面向康复工程的助行可穿戴外骨骼机器人的人类工效学设计[J];计算机科学;2015年10期

2 卞延庆;庄海;张颖杰;;永磁同步电机电流环电压前馈解耦控制[J];微电机;2015年07期

3 毛子明;张伟军;袁建军;谢广庆;;基于PVT模式的Spline插值研究[J];机电一体化;2015年05期

4 王晓远;王晓光;;盘式无铁心永磁同步电机矢量控制技术分析[J];中国电机工程学报;2014年18期

5 王莉娜;朱鸿悦;杨宗军;;永磁同步电动机调速系统PI控制器参数整定方法[J];电工技术学报;2014年05期

6 邓仁燕;唐娟;夏炎;王林翮;;基于前馈补偿的永磁同步电机电流环解耦控制[J];电力电子技术;2013年06期

7 莫会成;王健;任雷;;现代高性能交流伺服系统综述——驱动控制篇[J];微电机;2013年01期

8 丁信忠;张承瑞;李虎修;于乐华;胡天亮;;基于自适应扩展卡尔曼滤波器的永磁同步电机超低速控制[J];电机与控制应用;2012年09期

9 王莉娜;杨宗军;;SIMULINK中PMSM模型的改进及在参数辨识中的应用[J];电机与控制学报;2012年07期

10 陈小波;胡育文;黄文新;周玉斐;卜飞飞;;基于单电阻电流采样的矢量控制算法研究[J];电气传动;2011年05期

相关硕士学位论文 前4条

1 郑航明;自主减重外骨骼下肢机器人的混合控制系统设计与实现[D];电子科技大学;2014年

2 张无量;小功率永磁同步电机伺服系统设计与开发[D];电子科技大学;2014年

3 杨炀;微小型高性能电机伺服驱动器设计[D];哈尔滨工业大学;2010年

4 胡任之;永磁同步电机转子初始位置估计[D];哈尔滨工业大学;2008年



本文编号:2352948

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2352948.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5925f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com