当前位置:主页 > 理工论文 > 新能源论文 >

海藻生物质与废弃塑料共热解制备高性能生物燃料的研究

发布时间:2020-10-13 06:32
   本文研究了海藻生物质与废塑料的共热解过程,为生物燃料的工业化生产提供实验依据。通过使用固定床反应器,热重分析仪,热解气相色谱/质谱(PyGC/MS)分析,气相色谱/质谱(GC/MS)分析,傅里叶变换红外(FTIR)光谱分析以及模拟和优化等方法研究在不同条件下废弃塑料高密度聚乙烯(HDPE)和典型海藻条浒苔(EP)的共热解过程。首先在固定床反应器和热重分析仪中研究了条浒苔和废高密度聚乙烯(有无催化剂HSZM-5参与)的共热解,以获得最大产率的液体燃料。该部分着重分析了条浒苔和废塑料(HDPE)的共热解和催化共热解的协同效应、产物分布特性和动力学特性,其创新性及研究结果概述如下:(i)揭示了协同作用的存在抑制了炭化并减少了固体残留物的形成,并且降低了生物油中酸类、含氧化合物和含氮化合物的含量,而油中的芳烃和小分子碳氢化合物的含量显著增加;(ii)揭示了HZSM5催化剂能有效改善脂族烃的反应活性,产率和选择,并且在不改变反应机理的情况下降低了活化能。因此,在共热解和催化共热解过程中,羧酸/酯(41.72%)的相对含量分别降低了13.57%和19.87%,而含氮化合物的含量(19.73%)分别减少了7.3%和10.28%。同时在共热解和催化共热解所得到的生物油中,观察到烃类的相对含量(18.47%)分别增加了32.05%和45.70%。(iii)使用TGA数据通过五种不同的方法进行非等温动力学分析:Friedman,FWO,Vyazovkin,KAS和DAEM方法,结果表明催化共热解可以通过降低活化能显着降低该过程的能量输入。(iv)共热解和催化共热解所得到生物油的傅里叶变换红外光谱结果与气相色谱质谱联用的分析结果一致。其次,基于海藻和废塑料的共热解过程使用了两种不同的建模方法(即交互式和非交互式方法)研究了共热解过程中海藻(EP)和废塑料(HDPE)之间能量相关的协同效应。.该部分研究的创新性及研究结果概述如下:(i)提出了两种建模方法,用于评估在共热解过程中海藻(EP)和废塑料(HDPE)之间存在的与能量相关的协同效应。(ii)共热解过程中能量利用的结果表明,对于两种建模方法,海藻(EP)和废塑料(HDPE)共热解的能量显着降低。然而,第二种建模方法(即允许原料之间相互作用的交互式方法)在共热解过程中的总能量利用率比第一种方法显示出更大程度的降低(约7.82%),尤其是当原料混合物中废弃HDPE塑料的质量百分比为25wt%时。(iii)共热解建模和模拟研究的结果表明,海藻(EP)与废塑料(HDPE)的共热解能够实现能量输入最小化,提高热解产物的产率和品质,最大化热解产物馏分的价值,同时提高热解过程的整体效率。此外,本论文研究的第三部分重点是考察固定床反应器中海藻(EP)和废塑料(HDPE)的共热解制油规律,重点是建模和模拟共热解参数对产物产率的影响,然后优化实验参数以提高液体燃料的最大产率。该部分研究的创新性及结果概述如下:(i)分别模拟了三种有效共热解参数(热解温度,原料混合比和加热速率)对油、焦炭和气体产率的主要影响和作用,并预测了获得生物燃料最大产率的最佳条件,对实验结果进行方差分析与回归性分析。(ii)分析产物生物油和焦炭的性质,表明EP和HDPE的共热解的协同效应可以有效改善燃料品质。(iii)获得了生物油最大产率的最佳条件为492℃和17.8℃/min,原料混合物中具有80%质量的HDPE,试验值为76.84%,76.27%和76.65%的油产率,而最大预测值为76.0%,误差较小。本文的第四部分研究比较了在热解温度和加热速率保持相同的条件下固定床反应器中海藻(EP)和废塑料(HDPE)分别与典型木质纤维素生物质(稻壳)的共热解实验结果。其次,还比较了共热解参数对产物收率的影响的建模和模拟结果。原料混合物中的稻壳(RH)的质量百分比,热解温度和加热速率显著影响了生物油和焦炭产率。获得最大油产率的最佳条件是:温度为455℃,加热速率为20℃/min,原料混合物中的稻壳的质量百分比为80%。确认试验结果的生物油产率是48.20%,48.05%和47.90%,预测的最大值为47.70%,预测误差较小。本文最后研究了海藻生物质模型化合物(蓖麻油,大豆蛋白和葡萄糖)代表主要成分(碳水化合物,蛋白质和脂质)在热解反应中的交互作用,也为易于理解海藻共热解的复杂机制提供了重要的基础。主要使用Py-GC/MS分析来鉴定和定量海藻及其模型化合物在有或没有HZSM-5催化剂条件下的热解反应产物。主要结论为:(i)基于其模型组分及其相互作用,结合原料热解的PyGC/MS结果和通过固定床反应器实验产生的生物油的GC/MS结果,提出了几种可能海藻热解反应路径。(ii)此外,该研究的结果还表明蓖麻油对其他模型化合物中生物油形成的贡献作用最为显著,然而,相比于其他模型化合物,来自大豆蛋白热解的生物油含有更多N-杂环类和酚类化合物。(iii)随着催化剂与原料比的增加,芳烃产率显着提高。因此,本论文的研究结果对使用海藻生物质和废弃塑料共热解产生高品质生物燃料具有一定的参考意义。本文的结果为制定共热解系统的设计、运行规范、资源回收和有机废物管理的有效战略提供了重要的实验参考。另一方面建议后续的研究应该进一步探究共热解产物分布,了解海藻生物质本身存在的矿物质对于其与废塑料的共热解过程影响机制,以及各种催化剂对于热解的影响作用等,实现全面理解海藻和废塑料共热解的整体机制。
【学位单位】:江苏大学
【学位级别】:博士
【学位年份】:2019
【中图分类】:TK6
【文章目录】:
摘要
ABSTRACT
NOMENCLATURE
CHAPTER 1 GENERAL INTRODUCTION
    1.1 BACKGROUND OF THE STUDY AND STATEMENT OF THE PROBLEM
    1.2 OBJECTIVES OF THE STUDY
    1.3 SCIENTIFIC NOVELTY IN THE RESULTS/FINDINGS
    1.4 SIGNIFICANCE OF THE STUDY
    1.5 FRAMEWORK
    1.6 ORGANIZATION OF THE DISSERTATION
    1.7 SUMMARY
CHAPTER 2 LITERATURE REVIEW
    2.1 INTRODUCTION
    2.2 RELEVANCE AND DRAWBACKS OF CO-PYROLYSIS
    2.3 MECHANISMS OF BIOMASS-PLASTIC CO-PYROLYSIS PROCESS
    2.4 MAIN COMPOSITIONS OF BIOMASS
    2.5 SUMMARY OF DIFFERENT PLASTICS TYPES COMMONLY USED FOR CO-PYROLYSIS
    2.6 BIOMASS-PLASTIC CO-PYROLYSIS PRODUCTS
    2.7 BIOMASS AND WASTE PLASTICS CO-PYROLYSIS TECHNOLOGIES/PROCESSES
    2.8 Main Reactor Types used during Biomass-plastic Co-pyrolysis and the Process Conditions
    2.9 THE ROLE OF CATALYSTS IN BIOMASS-PLASTIC CO-PYROLYSIS
    2.10 OVERVIEW OF PREVIOUS STUDIES AND RECENT ADVANCES ON CO-PYROLYSIS OF BIOMASS AND PLASTICS
        2.10.1 Previous studies and recent advances on biomass–plastics co-pyrolysis in China
        2.10.2 Previous studies and recent progress on biomass–plastics co-pyrolysis elsewhere in the world
    2.11 SYNERGISTIC EFFECT BETWEEN BIOMASS AND PLASTICS IN CO-PYROLYSIS
        2.11.1 Increased bio-oil yield
        2.11.2 Improved bio-oil quality
        2.11.3 Effect of biomass–plastic co-pyrolysis on by-products (char and gas) production
    2.12 SUMMARY OF THE EFFECT OF MAJOR OPERATING PARAMETERS ON CO-PYROLYSISPRODUCTS YIELD
    2.13 FUTURE DIRECTIONS IN BIOMASS–PLASTICS CO-PYROLYSIS
    2.14 SUMMARY OF THE RESEARCH GAPS
    2.15 CONCLUSION
CHAPTER 3 CO-PYROLYSIS OF SEAWEEDS AND WASTE PLASTICS (WITH OR WITHOUT A CATALYST): THERMAL BEHAVIORS, KINETIC STUDIES, SYNERGISTIC EFFECT AND PRODUCTS CHARACTERIZATION
    3.1 INTRODUCTION
    3.2 MATERIALS AND METHODS
        3.2.1 Materials
        3.2.2 Catalyst preparation
        3.2.3 Thermogravimetric analysis
        3.2.4 Kinetics study
        3.2.5 Pyrolysis,catalytic and non-catalytic co-pyrolysis experiments and synergistic effect
        3.2.6 Gas chromatography-mass spectrometry (GC/MS) analysis
        3.2.7 Fourier Transform Infrared (FTIR) spectroscopy analysis
    3.3 RESULTS AND DISCUSSION
        3.3.1 Sample characterization results
        3.3.2 Thermogravimetric analysis and thermal degradation behaviors
        3.3.3 Kinetic evaluation of normal pyrolysis, non-catalytic and catalytic co-pyrolysis processes
        3.3.4 Product distributions duringnormal pyrolysis, co-pyrolysis and catalytic co-pyrolysis
        3.3.5 Catalytic and non-catalytic co-pyrolysis oil characterization
        3.3.6 Catalytic and non-catalytic co-pyrolysis oils and chars’ properties, and synergistic effect
        3.3.7 FTIR spectra analysis of co-pyrolysis and catalytic co-pyrolysis oils
    3.4 CONCLUSIONS
CHAPTER 4 MODELING OF CO-PYROLYSIS OF SEAWEEDS AND WASTEPLASTICS FOR ENERGY UTILIZATION REDUCTION
    4.1 INTRODUCTION
    4.2 MODEL DEVELOPMENT
        4.2.1 Model description
        4.2.2 Model formulation
    4.3 CO-PYROLYSIS MODELING APPROACHES
        4.3.1 Modeling approach I (Non-interactive method)
        4.3.2 Modeling approach II (Interactive method)
    4.4 EXPERIMENTAL STUDY
    4.5 RESULTS AND DISCUSSION
        4.5.1 Thermal analyses, co-pyrolysis kinetics and synergistic interactions
        4.5.2 Modeling approach for energy-related synergistic effects evaluation
    4.6 CONCLUSION
CHAPTER 5 CO-PYROLYSIS OF SEAWEEDS WITH WASTE PLASTICS:MODELING AND SIMULATION OF EFFECTS OF CO-PYROLYSIS PARAMETERS ON YIELDS, AND OPTIMIZATION STUDIES FOR ENHANCED BIOFUELS’ YIELD
    5.1 INTRODUCTION
    5.2 MATERIALS AND METHODS
        5.2.1 Materials and samples analysis
        5.2.2 Thermo-gravimetric analysis
        5.2.3 Pyrolysis process procedures
        5.2.4 Experimental design and optimization studies
        5.2.5 Pyrolysis products characterization
    5.3 RESULTS AND DISCUSSION
        5.3.1 Thermo-gravimetric analysis (TGA) and kinetics analysis
        5.3.2 Co-pyrolysis oil, char and gas yields
        5.3.3 Model fitting, evaluation and validation
        5.3.4 Optimization studies and effects of co-pyrolysis parameters on bio-oil,char and gas yields
        5.3.5 Pyrolysis oil characterization
        5.3.6 Properties of bio-oils and chars and co-pyrolysis synergistic effect
    5.4 CONCLUSION
CHAPTER 6 CO-PYROLYSIS OF SEAWEEDS WITH WASTE PLASTIC AND LIGNOCELLULOSIC BIOMASS UNDER SIMILAR PYROLYSIS CONDITIONS: A COMPARATIVE STUDY
    6.1 INTRODUCTION
    6.2 MATERIALS AND METHODS
        6.2.1 Materials and analysis
        6.2.2 Pyrolysis process procedures
        6.2.3 Experimental design and optimization study
        6.2.4 Analysis of bio-oil and char products and determination of some vital oil and char properties
    6.3 RESULTS AND DISCUSSION
        6.3.1 Sample analysis results
        6.3.2 Pyrolysis oil and char yields
        6.3.3 Model fitting, evaluation and ANOVA analysis
        6.3.4 Optimization study results, confirmatory experiments and the effects of factors on responses
        6.3.5 Synergistic effect of co-pyrolysis on bio-oil yield
        6.3.6 Pyrolysis and co-pyrolysis products characterization
    6.4 CONCLUSION
CHAPTER 7 SEAWEED PYROLYSIS MECHANISMS AND CHARACTERISTICS BASED ON THE MODEL COMPOUNDS AND THEIR INTERACTIONS: A PRELIMINARY STUDY TOWARDS UNDERSTANDING CO-PYROLYSIS MECHANISMS
    7.1 INTRODUCTION
    7.2 MATERIALS AND METHODS
        7.2.1 Materials
        7.2.2 Catalyst preparation
        7.2.3 Thermogravimetric analysis and fixed-bed experiments
        7.2.4 GC/MS analysis of bio-oils from fixed-bed experiments
        7.2.5 Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS)
    7.3 RESULTS AND DISCUSSION
        7.3.1 Thermal degradation characteristics of seaweed and its model compounds
        7.3.2 Pyrolysis products distribution
        7.3.3 Pyrolysis oils compositions determined by GC/MS analysis
        7.3.4 Py-GC/MS analysis of seaweed, its model compounds and their mixtures
        7.3.5 Potential possible pyrolysis pathways of seaweed and its components’ interactions
    7.4 CONCLUSION
CHAPTER 8 CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK
    8.1 CONCLUSION
    8.2 RECOMMENDATIONS FOR FUTURE WORK
REFERENCES
ACKNOWLEDGEMENT
PUBLISHED ARTICLES
OTHER PUBLICATIONS AT JIANGSU UNIVERSITY DURING MY Ph.D PROGRAM
APPENDICES


本文编号:2838859

资料下载
论文发表

本文链接:https://www.wllwen.com/projectlw/xnylw/2838859.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户625b8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com