社会科学大数据计算——大数据时代计算社会科学的核心议题
发布时间:2018-03-05 16:18
本文选题:大数据 切入点:计算社会科学 出处:《图书馆学研究》2017年22期 论文类型:期刊论文
【摘要】:大数据时代的数据累积与技术进步,为计算社会科学的发展奠定了新的契机,大数据计算也取代社会模拟成为计算社会科学的核心议题。社会科学大数据计算,依托最新的大数据分析处理技术,致力于从符合社会研究需要的数据海洋中挖掘、清洗出有价值的"知识数据",并在此基础上展开科学分析与知识发现。当前,电子踪迹、社交媒体、数字文本与空间位置信息是4种最具代表性的社会科学大数据类型,它们已被广泛应用于诸多社会研究领域之中,在推动数据分析方法创新的同时,也极大地拓展了社会科学的研究视野。尽管仍面临着数据、技术、知识边界和社会伦理等方面的种种限制,社会科学大数据计算的发展潜力无疑是巨大的。
[Abstract]:The accumulation of data and the advancement of technology in big data's time have laid a new opportunity for the development of computational social sciences. Big data computing has also replaced social simulation as the core topic of computational social sciences. Relying on the latest analysis and processing technology of big data, we are committed to excavating and cleaning out valuable "knowledge data" from the ocean of data that meets the needs of social research, and on this basis to carry out scientific analysis and knowledge discovery. Social media, digital text and spatial location information are the four most representative types of social science big data. They have been widely used in many fields of social research, while promoting the innovation of data analysis methods. Despite the limitations of data, technology, knowledge boundary and social ethics, big data's computing potential is undoubtedly enormous.
【作者单位】: 武汉大学社会学系;
【基金】:国家社科基金重大项目“大数据时代计算社会科学的产生、现状与发展前景研究”(项目编号:16ZDA086)的研究成果之一
【分类号】:C1
,
本文编号:1570990
本文链接:https://www.wllwen.com/shekelunwen/shgj/1570990.html