广义时变对称系统的耗散性分析与控制

发布时间:2018-05-15 22:22

  本文选题:广义时变对称系统 + 耗散控制 ; 参考:《沈阳工业大学》2017年硕士论文


【摘要】:受航空航天、智能电网、机器人等领域快速发展的影响,广义时变系统理论的研究得到了愈来愈多的关注,特别是关于其结构分析以及相关控制问题的研究取得了丰硕成果。耗散性系统理论广泛应用于物理系统的分析与综合,可用于降低系统研究中鲁棒控制的保守性;时滞系统常应用于无线传感器等工程领域中的信息互换以及多目标跟踪。本文的主要工作有:针对广义时变对称系统的耗散性分析与控制问题,研究了一类广义时变对称系统,对于给定的系统模型,引入了一个新的Lyapunov函数,通过应用广义Lyapunov稳定性理论、LMI线性矩阵不等式等方法,给出了使给定系统满足容许且严格(Q,S,R)-耗散的充要条件,利用所得结论进一步设计了使闭环系统满足容许且严格(Q,S,R)-耗散的输出反馈控制器;在此基础上,还研究了使所给系统同时满足H∞性能和正实性能的最优值求解问题,通过应用对称系统的特殊结构,给出了最优值?的显示表达式。针对时滞广义时变系统的容许与镇定问题,研究了一类时滞广义时变系统的容许性分析与镇定控制,通过应用广义Lyapunov稳定性理论、LMI线性矩阵不等式以及受限等价变换等方法,建立了针对时滞广义时变系统的Lyapunov不等式,从而将时滞广义时变系统的容许性问题转化为求解时滞广义时变系统的Lyapunov不等式问题,进而得到了使给定系统满足容许性的充分条件,根据所得的充分条件进一步研究了时滞广义时变系统的镇定控制问题,给出了状态反馈镇定器的设计方法。
[Abstract]:Influenced by the rapid development of aerospace, smart grid, robot and so on, the theory of generalized time-varying systems has been paid more and more attention, especially the research on its structure analysis and related control problems has achieved fruitful results. The dissipative system theory is widely used in the analysis and synthesis of physical systems, which can be used to reduce the conservatism of robust control in system research, and time-delay systems are often applied to information exchange and multi-target tracking in engineering fields such as wireless sensors. The main work of this paper is as follows: for the dissipative analysis and control of generalized time-varying symmetric systems, a class of generalized time-varying symmetric systems is studied. For a given system model, a new Lyapunov function is introduced. By applying the generalized Lyapunov stability theory and LMI-linear matrix inequalities, a sufficient and necessary condition for a given system to satisfy the admissible and strictly Q ~ (1) S ~ (1) R ~ (+) dissipation is given. The output feedback controller for the closed loop system is further designed to satisfy the allowable and strict QN Schi-R dissipation by using the obtained conclusions, and on this basis, the problem of solving the optimal value to satisfy both H 鈭,

本文编号:1894205

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/1894205.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c9d0e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com