新型可降解脂环族环氧树脂的合成及性能研究
本文选题:脂环族环氧树脂 + 合成 ; 参考:《大连理工大学》2017年博士论文
【摘要】:高度交联的三维网络结构赋予固化后的环氧树脂不溶不融的特性以及优异的力学、热学、耐化学品和粘结性能,使其即使在苛刻的工作条件下也能保持长期稳定性。然而,这种不溶不融的特性也使采用环氧树脂粘接产品的后处理变得十分困难,大量环氧树脂废弃物给环境带来很大压力,研究开发可控降解型环氧树脂对于产品废弃后的拆卸、昂贵元器件和贵金属的回收以及环境保护均具有非常重要的意义。此外,传统的环氧树脂来源于不可再生的化石资源。随着化石资源短缺和环境污染等问题日益严重,以可再生资源为原料的生物基环氧树脂受到了越来越多的关注。本论文通过分子设计,将热或化学不稳定基团引入到环氧树脂网络中,合成了系列热或化学降解型环氧树脂,其中部分环氧树脂采用了生物基可再生原料,重点考察了所合成环氧树脂固化物的降解行为及机理。论文的主要内容及结论如下:热降解型含亚硫酸酯基团的脂环族环氧树脂的合成及性能研究:以氯化亚砜和3-环己烯-1-甲醇为主要原料,设计合成了新型含亚硫酸酯基团的双官能团脂环族环氧树脂Epoxide-S,通过热引发阳离子开环聚合反应合成了 Epoxide-S和商品化环氧树脂ERL-4221的阳离子均聚物以及二者的共聚物。研究表明,由于交联网络中均匀分布着热不稳定的亚硫酸酯基团,Epoxide-S阳离子固化物的起始分解温度为185℃,在相同固化条件下,Epoxide-S固化物的起始分解温度明显低于ERL-4221固化物(323℃);而且,通过改变Epoxide-S和ERL-4221两种环氧树脂单体的比例,可以在185-323℃范围内调节共聚物网络的热降解温度。基于α-松油醇的热降解型脂环族环氧树脂的合成及性能研究:以生物基原料α-松油醇和二苯基二氯硅烷为主要原料,设计合成了新型含叔醚基团的双官能团脂环族环氧树脂Epoxide-TE;以4-甲基六氢苯酐为固化剂,合成了 Epoxide-TE环氧树脂酸酐固化物。研究表明,由于Epoxide-TE本身含有叔醚弱键,其与酸酐固化后在交联点处产生大量叔酯弱键,使得环氧树脂网络的起始分解温度为269℃,远低于ERL-4221酸酐固化物的起始分解温度(323℃),而且,Epoxide-TE酸酐固化物的玻璃态储能模量(2.41 GPa)高于 ERL-4221(2.19 GPa);通过改变 Epoxide-TE/ERL-4221 共聚物样品中 Epoxide-TE的含量,可系列调节交联网络的交联密度、玻璃化转变温度和热降解温度。热降解型含膦酸酯基团的脂环族环氧树脂的合成及性能研究:以苯基膦酰二氯和3-环己烯-1-甲醇为主要原料,设计合成了新型含膦酸酯基团的双官能团脂环族环氧树脂Epoxide-P1,采用酸酐热固化及热引发阳离子开环聚合两种固化方式分别合成了Epoxide-P1酸酐和阳离子固化物。研究表明,Epoxide-P1酸酐和阳离子固化物的玻璃态储能模量分别为2.43 GPa和2.42 GPa,玻璃化转变温度分别为171℃和113℃,交联密度分别为0.53×10-3mol cm-3和1.06×10-3mol cm-3;采用酸酐热固化及热引发阳离子开环固化的起始分解温度分别为283℃和228℃,均在可热降解环氧树脂的使用温度范围之内;由于含有磷元素,Epoxide-P1酸酐固化物的LOI值为24.2,比ERL-4221(18.2)提高了 33%;Epoxide-P1阳离子固化物室温下的剪切强度为6.65 MPa,在210℃后开始迅速下降,表明采用所合成环氧树脂制备的产品在210℃以上可以方便地拆卸和后处理。基于糠醛的酸降解型脂环族环氧树脂的合成及性能研究:以生物基原料糠醛和3-环己烯-1-甲醇为主要原料,设计合成了新型含缩醛基团的双官能团脂环族环氧树脂Epoxide-A。以4-甲基六氢苯酐为固化剂,制备了 Epoxide-A环氧树脂酸酐固化物。研究表明,与ERL-4221相比,固化后的Epoxide-A具有类似的起始分解温度(超过300℃)、玻璃化转变温度(186℃)和较高的玻璃态储能模量(2.51 GPa)、交联密度(1.35×10-3 mol cm-3)、剪切强度(4.70 MPa)以及较低的热膨胀系数(64.2 ppm K-1)。酸降解实验结果表明,均匀分布于交联网络中的大量缩醛基团的酸解导致了环氧树脂网络的分解,溶液酸性越强,降解速度越快。其中,在酸性最强的甲磺酸溶液中降解60min和120min后,Epoxide-A酸酐固化物的重量损失分别为48%和83%。
[Abstract]:The highly crosslinked three-dimensional network structure gives the cured epoxy resin insoluble and excellent mechanical, thermal, chemical and cohesive properties to maintain long-term stability even under harsh working conditions. However, this insoluble characteristic also makes the post treatment of epoxy resin bonded products ten. A large number of epoxy resin wastes have brought great pressure to the environment. The research and development of controllable degradation epoxy resin is of great significance for disassembly of products, the recovery of expensive components and precious metals and environmental protection. In addition, the traditional epoxy resin is derived from non renewable fossil resources. The problem of resource shortage and environmental pollution is becoming more and more serious. The bio based epoxy resin with renewable resources has attracted more and more attention. In this paper, the thermal or chemical unstable groups are introduced into the epoxy resin network by molecular design, and a series of thermal or chemical degradation epoxy resins are synthesized, some of which are used for epoxy resin. In this paper, the main contents and conclusions of the paper are as follows: the synthesis and properties of the alicyclic epoxy resin with the thermal degradation type of sulfite group, and the design and synthesis of new type containing subsulfone and 3- cyclohexene -1- methanol The cationic homopolymers of Epoxide-S and commercialized epoxy resin ERL-4221 were synthesized by the cationic ring opening polymerization of a sulfated group of difunctional group alicyclic epoxy resin Epoxide-S. The results showed that the thermal unstable sulfite group and Epoxide-S Yang were distributed uniformly in the crosslinked network, due to the uniform distribution of the sulfite group in the crosslinked network. The initial decomposition temperature of the subcurable substance is 185. Under the same curing condition, the initial decomposition temperature of the Epoxide-S solidified material is obviously lower than that of the ERL-4221 solidified substance (323 C). Moreover, the thermal degradation temperature of the copolymer network can be adjusted at 185-323 C by changing the ratio of two kinds of epoxy monomers of Epoxide-S and ERL-4221. The synthesis and properties of the thermally degraded aliphatic epoxy resin of oil and alcohol: a new type of bifunctional alicyclic epoxy resin Epoxide-TE with a new TERT ether group was designed and synthesized by using the biological base raw material alpha pine and two phenyl two chlorosilane, and the Epoxide-TE epoxy resin acid anhydride solid was synthesized with the 4- methyl six hydrogen phthalic anhydride as the fixator. The study shows that because Epoxide-TE itself contains a weak bond of TERT ether, it produces a large number of TERT ester weak bonds at the crosslinking point after curing with the acid anhydride, which makes the initial decomposition temperature of the epoxy resin network 269 C, far below the initial decomposition temperature of the ERL-4221 anhydride curable substance (323 degrees C), and the glass state modulus of the Epoxide-TE acid anhydride solidified substance (2.4 1 GPa) is higher than ERL-4221 (2.19 GPa); by changing the content of Epoxide-TE in the Epoxide-TE/ERL-4221 copolymer, the crosslinking density, the glass transition temperature and the thermal degradation temperature can be adjusted. The synthesis and properties of the alicyclic epoxy resin containing phosphonate group with thermal degradation type: phenyl phosphonyl two chlorine and 3- ring A new type of difunctional group aliphatic epoxy resin Epoxide-P1 with a new phosphonate group was designed and synthesized with -1- methanol as the main raw material. The Epoxide-P1 anhydride and the cationic solidified substance were synthesized by hot curing of acid anhydride and thermal initiation of cationic ring opening polymerization. The study showed that the glass of Epoxide-P1 anhydride and the cationic solidified substance were glass. The moduli of state energy storage are 2.43 GPa and 2.42 GPa respectively. The glass transition temperature is 171 and 113, respectively, the crosslinking density is 0.53 x 10-3mol cm-3 and 1.06 10-3mol cm-3, respectively, and the initial decomposition temperature of hot curing and heat initiating cation open ring curing is 283 and 228, respectively, in the use temperature of the thermo degradable epoxy resin. Within the circumference, the LOI value of the Epoxide-P1 acid anhydride curing substance is 24.2, which is 33% higher than that of ERL-4221 (18.2), and the shear strength of the Epoxide-P1 cations at room temperature is 6.65 MPa, and it begins to decrease rapidly at 210 degrees C, indicating that the products prepared by the synthesized epoxy resin can be dismantled and treated conveniently over 210 centigrade. Synthesis and properties of acid degraded alicyclic epoxy resin based on furfural: a new type of bifunctional epoxy resin Epoxide-A. with a new acetal group was designed and synthesized with biologic raw material furfural and 3- cyclohexene -1- methanol as the main raw material. The curing agent of 4- methyl six hydrogen phthalic anhydride was prepared, and the curing of Epoxide-A epoxy resin anhydride was prepared. The results showed that compared with ERL-4221, the cured Epoxide-A had similar initial decomposition temperature (over 300 C), glass transition temperature (186 C) and high glass state energy storage modulus (2.51 GPa), crosslinking density (1.35 x 10-3 mol cm-3), shear strength (4.70 MPa) and lower thermal expansion coefficient (64.2 ppm K-1). Acid degradation experimental results It is shown that the acid solution of a large number of acetal groups distributed uniformly in the crosslinked network leads to the decomposition of the epoxy resin network, the stronger the solution acidity and the faster the degradation rate. The weight loss of the Epoxide-A acid anhydride curing substance is 48% and 83%., respectively, after the degradation of 60min and 120min in the strongest acid solution.
【学位授予单位】:大连理工大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TQ323.5
【参考文献】
相关期刊论文 前10条
1 黄元波;王家强;顾继友;郑云武;郑志锋;;环氧植物油合成研究进展[J];林产化学与工业;2013年05期
2 付文;刘安华;李建雄;王丽;;快速光固化用阳离子光引发剂研究进展[J];热固性树脂;2012年05期
3 龚卫星;王光辉;;电子废弃物循环利用技术现状[J];中国资源综合利用;2012年09期
4 周蕾;许振明;;我国电子废弃物回收工艺研究进展[J];材料导报;2012年13期
5 褚甜甜;饶秋华;;脂环族环氧树脂/酸酐体系固化促进剂的研究[J];热固性树脂;2012年01期
6 李厚金;蓝文健;;天然单萜柠檬烯的微生物转化[J];化学进展;2011年11期
7 杨小华;夏建陵;黄坤;;松香树脂酸合成新材料的研究进展[J];材料导报;2011年21期
8 王忠刚;刘万双;赵琳妮;陈卓;;高性能脂环族环氧树脂分子设计与合成研究进展[J];高分子通报;2011年09期
9 邵诣臻;黄菊文;李光明;贺文智;庄绪宁;殷进;;我国电子废弃物管理现状及对策研究[J];环境科技;2011年S1期
10 张变香;魏保利;;紫外阳离子光引发剂及其发展动态[J];中国涂料;2011年04期
相关会议论文 前2条
1 孙曼灵;郑水蓉;马玉春;;环氧树脂固化促进剂(II)——环氧/酸酐体系的固化促进剂[A];第十六次全国环氧树脂应用技术学术交流会暨学会西北地区分会第五次学术交流会暨西安粘接技术协会学术交流会论文集[C];2012年
2 孙曼灵;;环氧树脂的固化促进剂及其应用[A];第十次全国环氧树脂应用技术学术交流会论文集[C];2003年
相关博士学位论文 前1条
1 刘万双;新型含硅、磷的脂环族环氧树脂合成及性能研究[D];大连理工大学;2011年
相关硕士学位论文 前2条
1 陈卓;热可控降解含磷硅脂环族环氧树脂的合成和改性研究[D];大连理工大学;2013年
2 蔺晓博;脂环族环氧树脂合成、光固化与热降解性能研究[D];大连理工大学;2008年
,本文编号:2071442
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2071442.html