当前位置:主页 > 硕博论文 > 工程博士论文 >

以荧光开关为导向的多酸基薄膜材料的构筑及性能研究

发布时间:2018-06-29 06:07

  本文选题:荧光开关 + 多酸 ; 参考:《吉林大学》2017年博士论文


【摘要】:多金属氧酸盐(简称:多酸)是一类无机-金属氧簇,具有纳米尺度。由于其组成丰富、结构多样、性质可调等特点,使得其有高的水溶性、好的耐热性、强的抗氧化性、好的可逆性、优良的质子和电子存储能力、可逆灵活的氧化还原能力及对环境友好、无污染等独有的优势,从而引起了广大研究者的研究兴趣。荧光开关是指在紫外灯照下,通过外界的刺激,荧光信号可逆的呈现与消失的过程。近些年来,荧光开关功能材料已在智能光窗、化学传感、光学显示、荧光成像、信息存储等领域具有潜在的应用,从而促进了荧光开关材料研究的发展。荧光开关的实现要求功能材料中既包含发光组分又包含刺激变色组分。而多酸具有优良的光致变色与电致变色的性能,含有稀土的多酸自身集发光组分稀土离子与变色组分多酸骨架于一体,因此可以将其组装到复合功能材料中,从而实现荧光开关性能。多酸基荧光开关功能是通过着色态多酸与发光组分之间的荧光共振能量转移来实现的。能量转移的条件需满足以下三点:1)能量给体(发光组分)与能量受体(变色组分)在一定距离范围内;2)能量给体与能量受体以恰当的方式排列;3)能量给体的发射光谱与能量受体的吸收光谱有重叠部分。基于以上条件,通过分子设计,我们构筑了一系列基于多酸的荧光开关材料。在本论文中,我们将多酸的电致变色性能与水溶性有机发光分子、稀土发光多酸的发光性能相结合,通过不同组装技术构筑了变色-发光薄膜材料,进而实现了电化学调控下的红光、绿光、橙光和白光的单色态荧光开关及白光到蓝光的双色态荧光开关。具体研究内容如下:第一,我们选取可溶性的绿光分子8-羟基芘-1,3,6-三磺酸三钠盐(HOPTS)作为研究对象,通过电沉积与层层自组装技术(LBL)结合的方法以及将绿光分子HOPTS负载到氧化石墨烯(GO)上生成杂合体GO@HOPTS后再与多酸组装的方法,成功地制备了两种类型的绿光复合薄膜材料。第一类型的绿光复合薄膜材料是通过简易的电沉积方法在ITO导电玻璃基底上构筑了一种新颖的绿光薄膜,然后,基于构筑好的绿光薄膜,结合LBL技术成功构筑了外包不同层数变色组分P5W30的绿光薄膜材料[(HOPTS)50/(PDDA/P5W30)n](n=10,film 1;n=27,film 2;n=57,film 3)。第二类型的绿光复合薄膜材料是基于正负电荷物质间静电相互作用的原理,我们把GO@HOPTS和变色组分多酸P5W30通过LBL技术在石英基底和ITO导电玻璃基底上制备了绿光薄膜材料{(PDDA/P5W30)5/[(PDDA/P5W30)5/PDDA/GO@HOPTS]15/(PDDA/P5W30)5}。通过循环伏安法表征了复合薄膜中P5W30的电化学活性、荧光光谱法表征了复合薄膜中HOPTS的发光性质、原子力显微镜技术表征了复合薄膜的形貌、X-光电子能谱表征了复合薄膜的组成。此外,通过使用原位的紫外-可见光电化学体系、荧光光电化学体系研究了复合薄膜材料的电致变色性能与荧光开关行为。研究结果表明:上述两类薄膜材料在电化学刺激下均显示出绿光荧光开关性能,且具有很好的可逆性与稳定性。进一步比较发现电沉积与LBL技术结合的方法所制备的薄膜材料具有更宽的电压范围,因此这种方法为功能材料的组装提供一种新的技术。第二,我们选取含有Sm~(3+)的橙光多酸Sm PW11作为研究对象。Sm PW11是一种集橙光组分Sm~(3+)与变色组分PW11于一体的分子二分体。首先,我们研究了在不同p H条件下Sm PW11的紫外可见吸收、电化学活性和荧光性质,确定了最佳p H条件,并在最佳p H溶液介质中研究了Sm PW11的橙光开关性能。然后,我们通过选取两种组分相同、结构不同、电荷数不同的导电聚合物分子PDDA和PEI作为连接剂,在ITO导电玻璃基底上成功地制备了橙光薄膜材料[PDDA/P2W18]10/[PDDA/Sm PW11]60和[PEI/P2W18]10/[PEI/Sm PW11]60。通过紫外-可见光谱、荧光光谱、循环伏安法、计时电流法、X-射线光电子能谱和原子力显微镜技术对橙光薄膜材料进行表征。最后,通过使用原位紫外-可见光电化学体系和荧光光电化学体系研究了橙光薄膜材料的橙光开关性能。研究结果表明:由于橙光发光组分稀土Sm~(3+)和电还原变色组分PW11之间的分子内能量转移,在电化学调控下,橙光复合薄膜材料不仅显示了橙光的性能,还体现了稳定可逆的橙色荧光开关行为。此外,与PDDA相比,PEI被认为是构筑多酸基复合薄膜材料的最佳分子连接剂。第三,我们选取含有Dy~(3+)的发白光多酸Dy PW11作为研究对象。首先,我们在不同p H条件下考察了Dy PW11的紫外-可见吸收光谱、荧光光谱和循环伏安,从而确定了Dy PW11的稳定p H范围及最佳的实验条件,并在最佳实验条件下研究了Dy PW11的白光开关性能。然后,通过合理的分子设计,我们成功地制备了三个发白光的薄膜(PEI/Dy PW11)41、{(PEI/P8W48)1/(PEI/Dy PW11)5}9和{(PEI/P8W48)3/(PEI/Dy PW11)5}9,并通过原位的光电化学体系研究了它们在-0.7V与0.7 V电位之间的荧光开关行为。研究结果表明:一方面,三个薄膜均显示了很好的可逆性与稳定性;另一方面,薄膜(PEI/Dy PW11)41实现了不完全的白光淬灭、薄膜{(PEI/P8W48)1/(PEI/Dy PW11)5}9实现了可逆的白-蓝光双色态荧光开关、薄膜{(PEI/P8W48)3/(PEI/Dy PW11)5}9实现了完全的白光荧光开关。因此,我们的研究工作不仅制备了纯无机的白光薄膜材料,而且提供了一种潜在的选择性淬灭特定颜色荧光的方法。第四,在第一部分研究工作的基础上,我们选取了纯无机的含有Tb~(3+)的发绿光多酸Tb Ge W作为研究对象。首先,我们在不同p H条件下研究了Tb Ge W的紫外-可见吸收、电化学活性和荧光性质,并找到了Tb Ge W稳定的p H范围及最佳实验条件,并研究了溶液中绿光荧光开关行为。然后,我们使用质子化的PEI聚电解质作为分子连接剂,通过层层组装技术成功地构筑了发绿光的薄膜材料(PEI/Tb Ge W)42,在较高负电位-0.9 V时其荧光淬灭度仅达到24.6%。为了能够提升此薄膜材料的荧光淬灭度,通过分子设计,我们在上述薄膜材料中引入了变色组分P2W18,进而制备出P2W18和Tb Ge W具有不同比例的绿光薄膜材料(PEI/P2W18/PEI/Tb Ge W)42和{(PEI/P2W18)3/PEI/Tb Ge W}42,它们在外加-0.7 V电位时,其荧光淬灭度分别达到了56.9%和94.7%。研究结果表明:通过绿光组分稀土Tb~(3+)和电致变色组分Ge W之间的分子内能量转移以及与P2W18之间的分子间能量转移,我们实现了纯无机发绿光多酸Tb Ge W基础上薄膜材料的绿光荧光开关。第五,我们选取含有Eu~(3+)的发红光多酸簇Eu PW11作为研究对象。首先,我们在溶液中详细考察了Eu PW11的紫外-可见吸收、电化学活性和荧光性质与溶液p H的关系,最终确定了Eu PW11稳定的p H范围及最佳实验条件,并研究了溶液中红光荧光开关行为。然后,通过层层组装技术制备了发红光的薄膜材料(PEI/Eu PW11)39,其在外加-0.7 V电位时荧光淬灭度仅为69%。为了能够彻底地实现红光薄膜材料的荧光开关,我们在上述薄膜材料中引入了变色组分P5W30,进而组装了发红光的薄膜材料(PEI/P5W30/PEI/Eu PW11)39,其在外加-0.7 V电位时荧光淬灭度达到了94%。这项研究结果证明通过合理地引入电致变色多酸组分即可实现对红光荧光的完全淬灭。总之,以荧光开关为导向,以多酸为构筑基元,基于分子内与分子间能量转移的基本原理,我们分别制备了一系列不同颜色发光的薄膜材料,而且实现了红光、绿光、橙光和白光的单色态荧光开关及白-蓝光转换的双色态荧光开关。此外,发展了一种构筑薄膜材料的新方法,即电聚合和层层组装结合的方法。因此,此论文研究工作不仅促进了多酸在荧光开关材料方面研究的进展,而且在发展纯无机荧光开关材料的研究方面提供了有益的借鉴。
[Abstract]:Polyoxometalates (polyoxometalates) are a class of inorganic metal oxygen clusters, which have nano scale. Due to their rich composition, diverse structure and adjustable properties, they have high solubility in water, good heat resistance, strong antioxidation, good reversibility, excellent proton and electronic storage capacity, reversible and flexible redox ability and environment. In recent years, fluorescent switch functional materials have been used in intelligent light windows, chemical sensing, optical display, optical display, fluorescence imaging, information storage and so on. The field has potential applications, which promotes the development of the study of fluorescent switching materials. The realization of the fluorescent switch requires that the functional materials include both the luminescent components and the discoloration components. The polyacid has excellent photochromism and electrochromic properties, and the rare earth's polyacid self set luminescence component and the discoloration component contain the rare earth. The acid skeleton is integrated so that it can be assembled into the composite functional material to achieve the performance of the fluorescent switch. The function of the polyacid based fluorescent switch is realized by the fluorescence resonance energy transfer between the colored polyacid and the luminescent component. The energy transfer conditions need to meet the following three points: 1) energy donor (luminescent component) and energy receptor ( Discoloration components) within a certain range; 2) the energy donor and energy receptors are arranged in a proper way; 3) the emission spectrum of the energy donor is overlapped with the absorption spectrum of the energy receptor. Based on the above conditions, we have constructed a series of polyacid based fluorescent switching materials by molecular design. In this paper, we will be polyacid. The electrochromic properties are combined with water-soluble organic luminescent molecules and the luminescent properties of rare earth luminescent polyacids. The color change luminescent film materials are constructed by different assembly techniques, and the red light, green light, orange and white light fluorescence switches under the electrochemical regulation and the double color fluorescence switch from white to blue light under the electrochemical control are realized. The contents are as follows: first, we select the soluble green light molecule 8- hydroxy pyrene -1,3,6- three sulfonic acid three sodium salt (HOPTS) as the research object, through the method of combining electrodeposition with layer layer self-assembly technology (LBL) and the method of generating complex GO@HOPTS by loading the green light molecule HOPTS to the graphene oxide (GO) and then assembling the polyacid with the polyacid. Two types of green light composite film materials are prepared. The first type of green light composite film is a novel green light thin film on the ITO conductive glass substrate by simple electrodeposition. Then, based on the constructed green light thin film and LBL technology, the green light thin film with different layers of discoloration components P5W30 is constructed successfully. The membrane material [(HOPTS) 50/ (PDDA/P5W30) n] (n=10, film 1; n=27, film 2; n=57, film 3). The second type green light composite film material is based on the principle of electrostatic interaction between positive and negative charge materials. DDA/P5W30) 5/[(PDDA/P5W30) 5/PDDA/GO@HOPTS]15/ (PDDA/P5W30) 5}. characterized the electrochemical activity of P5W30 in the composite film by cyclic voltammetry. The luminescence properties of HOPTS in the composite film were characterized by fluorescence spectroscopy. The morphology of the composite films was characterized by atomic force microscopy. The composition of the composite films was characterized by the X- photoelectron spectroscopy. Furthermore, the composition of the composite films was characterized by the atomic force microscopy. By using in situ UV visible photochemical system, the electrochromic properties and fluorescence switch behavior of the composite film materials are studied by the fluorescence photoelectrochemical system. The results show that the above two kinds of thin film materials show the performance of the green light switch under the electrochemical stimulation, and have good reversibility and stability. It is found that the thin film materials prepared by the combination of electrodeposition and LBL technology have a wider range of voltage. Therefore, this method provides a new technique for the assembly of functional materials. Second, we select the orange polyacid Sm PW11 containing Sm~ (3+) as the study object,.Sm PW11, an orange component Sm~ (3+) and a color component PW11. First, we studied the UV visible absorption, electrochemical activity and fluorescence properties of Sm PW11 under different P H conditions, determined the optimum P H condition, and studied the orange switch performance of Sm PW11 in the best p H solution medium. Then, we chose the same two components, the structure is different, the charge number is different. The conductive polymer molecules PDDA and PEI are used as connecting agents to prepare orange light thin film materials [PDDA/P2W18]10/[PDDA/Sm PW11]60 and [PEI/P2W18]10/[PEI/Sm PW11]60. on ITO conductive glass substrates by UV visible spectra, fluorescence spectra, cyclic voltammetry, chronoamperometric method, X- ray photoelectron spectroscopy and atomic force microscopy. Orange light thin film materials are characterized. Finally, the orange light switching properties of orange light thin film materials are studied by using in situ UV visible photoelectrochemistry and fluorescent photoelectrochemical system. The results show that the intramolecular energy transfer between the rare earth Sm~ (3+) and the electrochromic component PW11 of the orange light luminescence is controlled by electrochemistry The orange light composite film not only shows the properties of orange light, but also reflects the stable and reversible orange fluorescent switch behavior. In addition, compared with PDDA, PEI is considered as the best molecular linking agent for constructing polyacid based composite film materials. Third, we select the white light polyacid Dy PW11 containing Dy~ (3+) as the research object. First, we are not Under the condition of P H, the UV visible absorption spectra, fluorescence spectra and cyclic voltammetry of Dy PW11 were investigated, and the stable P H range of Dy PW11 and the best experimental conditions were determined. The white light switching performance of Dy PW11 was studied under the best experimental conditions. Then, we successfully prepared three thin white light thin films by rational molecular design. The film (PEI/Dy PW11) 41, {(PEI/P8W48) 1/ (PEI/Dy PW11) 5}9 and {(PEI/P8W48) 3/ (PEI/Dy PW11) 5}9 are studied by in situ photochemical systems. 41) 41 realized incomplete white light quenching, the film {(PEI/Dy PW11) 5}9 realized reversible white blue double color fluorescence switch, and the film {(PEI/P8W48) 3/ (PEI/Dy PW11) 5}9 realized complete white light fluorescence switch. Therefore, our research work not only prepared pure inorganic white light thin film material, but also provided a potential of potential. The method of selectively quenching specific color fluorescence. Fourth, on the basis of the first part of the study, we selected pure inorganic Tb~ (3+) Tb Ge W as the research object. First, we studied the UV visible absorption, electrochemical activity and fluorescence properties of Tb Ge W under different P H conditions, and found the Tb Ge. W stable P H range and the best experimental conditions, and study the behavior of green light fluorescence switch in the solution. Then, we use the protonated PEI polyelectrolyte as a molecular connector, successfully constructed the green light thin film material (PEI/Tb Ge W) 42 through the layer assembly technology, and the fluorescence quenching degree is only to 24.6%. at the higher negative potential -0.9 V, and the fluorescence quenching degree is only to 24.6%.. In order to improve the fluorescence quenching degree of this film material, by molecular design, we introduced the discoloration component P2W18 in the above film materials, and then prepared the green light film materials (PEI/P2W18/PEI/Tb Ge W) 42 and {(PEI/P2W18) 3/ PEI/Tb Ge as P2W18 and Tb Ge W. The 56.9% and 94.7%. results show that the green light switch between the green light component rare earth Tb~ (3+) and the electrochromic component Ge W between the molecular energy transfer and the intermolecular energy transfer between P2W18, and the pure inorganic green polyacid Tb Ge W based on the green fluorescent switch. Fifth, we choose to contain The red light polyacid cluster Eu PW11 of Eu~ (3+) is used as the research object. First, we investigated the ultraviolet visible absorption of Eu PW11 in the solution, the relationship between the electrochemical activity and the fluorescence property and the solution P H. Finally, the P H range and the optimum experimental conditions for the Eu PW11 stabilized, and the behavior of the red fluorescence switch in the solution were studied. Then, through the study, the behavior of the red light fluorescence switch in the solution was studied. The red thin film material (PEI/Eu PW11) 39 was prepared by layer assembly technology. The fluorescence quenching degree of the film was only 69%. at the -0.7 V potential in order to complete the fluorescence switch of the red film material thoroughly. We introduced the discoloration component P5W30 in the film materials above, and then assembled the red thin film material (PEI/P5W30/PEI/Eu PW11). 39, the fluorescence quenching degree of the -0.7 V potential was reached to 94%.. The result of the study proved that the red light fluorescence could be completely quenched by the rational introduction of electrochromic polyacid components. In a word, we made the basic principle of the fluorescence switch as the guidance, the polyacid as the building element and the intramolecular and intermolecular energy transfer based on the basic principle. A series of thin film materials with different colors are prepared, and the monochromatic fluorescence switches of red, green, orange and white light and white blue light switching are used. In addition, a new method of building thin film materials is developed, that is, the method of electropolymerization and layer assembly and bonding. Therefore, this research work not only promotes the research work of this paper. The research progress of Polyoxometalates in fluorescent switch materials has provided a useful reference for the development of pure inorganic fluorescent switch materials.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O657.3

【相似文献】

相关期刊论文 前10条

1 ;性能优异的新型薄膜材料[J];橡塑技术与装备;2002年02期

2 孙朝霞;;全国光学功能薄膜材料标准化技术委员会2012年度标准化工作会议暨行标审查会在济南圆满举行[J];信息记录材料;2013年01期

3 ;美国成功发明出可变色薄膜材料[J];河南化工;2013年07期

4 刘江龙,邹至荣;激光化学气相沉积薄膜材料技术的研究进展[J];材料导报;1991年10期

5 ;薄膜材料科学与技术──青年科学家论坛第44次活动[J];学会;2001年04期

6 王怀文,亢一澜,富东慧;应用数字散斑相关技术进行薄膜材料断裂问题研究[J];烟台大学学报(自然科学与工程版);2001年02期

7 夏德宏,吴永红,李树柯;薄膜材料的热辐射穿透深度研究[J];热科学与技术;2003年03期

8 胡江川,王万录,马平,陈松林;几种紫外薄膜材料的阈值场强分析[J];重庆大学学报(自然科学版);2005年08期

9 史芳;赖欣;崔春华;何见超;毕剑;高道江;;功能薄膜材料的环境协调性制备技术研究进展[J];科学技术与工程;2006年09期

10 龙斌;;韩国开发出使薄膜材料领域研究成果最大化的高速研究技法[J];功能材料信息;2007年01期

相关会议论文 前10条

1 张斌;施立群;承焕生;王建中;李嘉庆;张杰雄;;核分析技术在薄膜材料中的应用[A];第十四届全国核物理大会暨第十届会员代表大会论文集[C];2010年

2 刘维民;翁立军;薛群基;;空间润滑薄膜材料与技术[A];第六届全国表面工程学术会议论文集[C];2006年

3 刘书田;许卫凯;董炎章;;左手薄膜材料的设计优化[A];第十五届全国复合材料学术会议论文集(上册)[C];2008年

4 蔡s,

本文编号:2081157


资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2081157.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b1438***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com