钛基磷酸钙复合涂层的制备及其生物活性评价
[Abstract]:The chemical composition of biological material and its surface topological structure play a key role in adjusting the biological behavior of protein adsorption, cell adhesion, spreading, migration, proliferation and differentiation. Titanium and titanium alloys have superior physical and chemical properties, which have been widely used in various implants, such as orthopedic, dental, and cardiovascular stents. However, that surface of the titanium base material has a biological inertia, which is weak in the ability of the peripheral bone tissue to form a bone, which delay the time of tissue healing. Therefore, it is of great clinical significance to improve the biological performance of the surface of the titanium implant. The preparation of the hydroxyapatite (HAP) composite coating on the surface of the titanium substrate has become an important means to improve the surface biological activity. FHAP/ ZrO2, Sr FHAP, Sr-Ca-P/ gelatin, MnHAP and HAP/ Ca-SiO3 composite coatings were prepared on the surface of titanium. The phase structure, morphology and composition of the HAP composite coating were studied by means of scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (EDS). The corrosion resistance, mechanical property and cell compatibility of the composite coating were evaluated. The main research contents and conclusions are as follows: a compound coating of a fluorine-doped hydroxyapatite/ oxide-oxide (FHAP/ Zr O2) is prepared on the surface of the titanium by a constant current deposition method. And the crystal grains of the apatite are smaller and the crystallinity is increased, and the coating is a nano-scale needle-like shape. The results show that the FHAP/ ZrO2 composite coating still has good bonding strength even after soaking for 2w in the physiological solution. In vitro dissolution experiments show that the FHAP/ ZrO2 composite coating has lower solubility, that is, better stability, than that of the single-phase HAP coating. The polarization tests show that the FHAP/ ZrO2 composite coating has high corrosion resistance to the HAP. The results of cell adhesion show that the FHAP/ ZrO2 composite coating has good cell compatibility, and the osteoblast is large and closely adhered to it with good morphology. In order to investigate the influence of the doping of fluoride ion and fluoride ion on the properties of the coating, a composite coating of codoped hydroxyapatite (Sr FHAP) was prepared on the surface of titanium by electrodeposition. The composite coating is uniform and dense, and is a nanometer-scale needle-like shape. The fluoride ion and the ionization ions are co-doped into the HAP crystal structure, and fluorine is used as an anti-dissolution element to maintain the long-term stability of the coating, and is used as a dissolution element to promote the bioactivity and the cell compatibility of the coating. The calcium ion dissolution test shows that the SrFHAP composite coating has good physiological stability in 2w. In the simulated body fluid, the SrFHAP composite coating shows stronger corrosion resistance than the pure HAP. In vitro cell detection, the effect of the composite coating on the adhesion and proliferation of the osteoblast is the best, indicating that it has good cell compatibility. In order to investigate the effect of doping on the properties of the coating, a composite coating of calcium-doped calcium phosphate/ gelatin (Sr-Ca-P/ gelatin) was prepared on the surface of titanium by electrodeposition. The Ca-P crystal structure, the gelatin and the Sr-Ca-P are mixed into the Sr-Ca-P/ gelatin composite coating, the whole of the coating is a porous shape, the surface of the coating is rough and uneven, and the adhesion of the porous structure to the osteoblast is very favorable. Sr2 + ions and gelatin are uniformly doped and dispersed in the Ca-P coating. The coating has a thickness of about 10. m u.m, and there is no peeling and/ or cracking at the interface between the coating and the substrate. The tensile test shows that the bonding strength between the Sr-Ca-P/ gelatin composite coating and the substrate is 5.6 MPa and 1.8 MPa, and the bonding strength is weak. The polarization tests show that the Sr-Ca-P/ gelatin composite coating has strong corrosion resistance. The adhesion of the osteoblast to the surface of the composite coating was good, and the MTT assay showed that the proliferation ability of the osteoblast on the surface of the composite coating was good, and the Sr-Ca-P/ gelatin composite coating had better cell compatibility. The composite coating of Mn-doped hydroxyapatite (MnHAP) was prepared by electrodeposition. And the surface of the Ti is soaked by a hot alkali to form a Na2TiO3 thin film, and the bonding strength between the MnHAP composite coating and the titanium substrate can be increased. The composite coating is uniform and dense, which is formed by the aggregation of needle-like crystals with a thickness of about 10. m u.m. The tensile test results show that the bonding strength between the composite coating of the MnHAP and the substrate is about 2 times that of the pure HAP coating, which basically meets the requirements of the international standard. The analysis of the polarization curve shows that the corrosion resistance of the Ti is greatly enhanced by the composite coating of MnHAP. The Mn-HAP coating can rapidly induce the nucleation and growth of the bone-like apatite in the simulated body fluid, indicating that the coating has good biological activity. The cell has a typical osteoblast adhesion phenotype on the surface of the MnHAP composite coating, and the doping of the manganese element makes the proliferation activity of the cell on the surface of the MnHAP composite coating good, and the cell compatibility of the coating is good. HAP/ CaSiO3 composite coatings were prepared on the surface of titanium by electrodeposition in the electrolyte composed of nano-SiO2, Ca (NO3)2 and NH4H2PO4. The surface of the HAP/ CaSiO3 composite coating is composed of an internal dense nano-scale needle-like crystal and an outer micron-sized porous structure, and the porous structure is very favorable for the formation of the new bone. The X-ray diffraction results show that the composite coating mainly includes the HAP phase and the Ca-Si 3 phase. The tensile test results show that the bonding strength between the HAP/ CaSiO3 composite coating and the Ti substrate is 19.1-4.7 MPa, which has basically met the requirements of international standards. The polarization test shows that the HAP/ CaSiO3 composite coating has strong corrosion resistance. The proliferation ability of MC3T3-E1 osteoblast on the surface of HAP/ Ca SiO3 composite coating was significantly higher than on the surface of HAP, indicating that the HAP/ CaSiO3 composite coating had better cell compatibility. In the light of the above, the present study adopts the electrodeposition method to carry out the construction of a plurality of ion-doped calcium phosphate active coatings, and the electrodeposition preparation technology of the calcium phosphate composite coating is theoretically and experimentally studied. The effects of fluoride ion, iron ion, manganese ion, silicon ion and gelatin on the physical properties, chemical properties and biological activity of the composite coatings were studied. The various trace elements (such as fluorine, iron, manganese, silicon, etc.) required for osteogenesis were successfully introduced into the Ca-P coating to provide a preliminary experimental basis for the further study of the clinical application of the calcium phosphate composite coating in the repair of bone defects.
【学位授予单位】:电子科技大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:R318.08
【相似文献】
相关期刊论文 前10条
1 张静娴;洪秋虹;孙学通;张新平;;医用多孔TiO_2/HA/TiO_2复合涂层的制备和性能[J];材料研究学报;2012年06期
2 程祥荣,周彬,蒋滔,邓炜,王贻宁;纤维连接蛋白与钙磷复合涂层的初步研究(一)复合涂层的制备[J];现代口腔医学杂志;2002年04期
3 刘榕芳,肖秀峰,郑立群,黄俊民;两步法电沉积制备HA/Ag复合涂层[J];应用化学;2003年06期
4 王周成;黄龙门;唐毅;倪永金;林昌健;;电化学方法在钛表面制备Co-YSZ/HAp纳米复合涂层[J];物理化学学报;2006年05期
5 孟德强;张继东;曹聪;董宇启;;等离子喷涂硅灰石/氧化锆复合涂层修复兔骨缺损的实验研究[J];实用医学杂志;2007年10期
6 张柏林;王英波;鲁雄;周先礼;屈树新;冯波;翁杰;;脉冲电化学沉积法制备钛基HA/Ag复合涂层[J];稀有金属材料与工程;2010年10期
7 郭恒;陈吉华;马楚凡;成炜;;溶胶-凝胶/微弧氧化复合制备种植体表面HA/TiO_2复合涂层的研究[J];中国美容医学;2007年03期
8 吴雪林;何浩;刘柳;黄浩原;陈科屹;牟雁东;;钛合金种植体表面生物活性因子缓释涂层的构建及生物学评价[J];口腔医学;2014年06期
9 苏冰,于旭东,郭连峰,王成焘;溶胶-凝胶法制备Ca_(10)(PO_4)_6(OH)_2/TiO_2复合涂层及其在模拟生理体液中的行为[J];无机化学学报;2005年07期
10 李素敏;张芹;赵玉涛;刘晓燕;张钊;;Ti6Al4V表面HAF/YSZ梯度复合涂层的制备和性能[J];材料研究学报;2010年05期
相关会议论文 前10条
1 许坚勇;;复合涂层的技术应用[A];防腐蚀工程技术交流会暨防腐蚀及节能新材料普及讲座论文集[C];2008年
2 赵洪超;徐曦;王旭利;;复合涂层长期储存寿命研究[A];中国工程物理研究院第七届电子技术青年学术交流会论文集[C];2005年
3 蒋驰;周晋林;赖新春;肖云峰;税毅;王术刚;;钽/钨/锡复合涂层喷涂工艺应用[A];中国工程物理研究院科技年报(2002)[C];2002年
4 程银健;陈九磅;王平;;高温耐磨复合涂层的制备与磨损性能研究[A];2011年安徽省科协年会——机械工程分年会论文集[C];2011年
5 陆企亭;黄茂松;史以洪;;新一代水轮机抗磨蚀复合涂层的研制[A];水轮机抗磨蚀技术研讨会论文集[C];2006年
6 刘燕;任露泉;于思荣;苑东生;;仿生非光滑纳米复合涂层的润湿性研究[A];农业机械化与新农村建设——中国农业机械学会2006年学术年会论文集(上册)[C];2006年
7 王福恒;;复合涂层重防护技术研究[A];电子产品防护技术研讨会论文集[C];1996年
8 谢志雄;董仕节;;点焊电极表面电火花沉积复合涂层的组织和性能[A];湖北省第十届热处理年会论文集[C];2006年
9 雷廷权;欧阳家虎;耿林;裴宇滔;郭立新;李强;;激光熔覆复合涂层组织的形成与控制[A];第六届全国表面工程学术会议暨首届青年表面工程学术论坛论文集[C];2006年
10 陈永雄;魏世丞;刘燕;白金元;梁秀兵;徐滨士;;电弧喷涂抗热腐蚀/海水腐蚀双层复合涂层的制备及其组织分析[A];第七届全国表面工程学术会议暨第二届表面工程青年学术论坛论文集(二)[C];2008年
相关重要报纸文章 前2条
1 记者 姚耀;纳米复合涂层新技术为飞机护航[N];中国化工报;2010年
2 刘小革;我国核聚变装置壁处理再创新技术[N];四川科技报;2000年
相关博士学位论文 前10条
1 刘延辉;Ti6A14V钛合金表面激光熔覆镍基复合涂层及增强机理研究[D];华东理工大学;2015年
2 张伟钢;复合涂层结构与红外波段特性、兼容性及光谱选择性研究[D];南京航空航天大学;2014年
3 严雅静;金属钛表面TiO_2纳米管磷灰石复合涂层的制备与生物活性研究[D];电子科技大学;2015年
4 黄勇;钛基磷酸钙复合涂层的制备及其生物活性评价[D];电子科技大学;2014年
5 王永东;氩弧熔敷原位自生颗粒增强镍基复合涂层研究[D];哈尔滨工程大学;2009年
6 徐德生;仿生非光滑耐磨复合涂层的研究[D];吉林大学;2004年
7 周加贝;可载药生物高分子/磷酸钙多孔复合涂层的制备、表征及生物学评价[D];浙江大学;2012年
8 顾盛挺;激光熔覆颗粒增强复合涂层的力学性能及损伤破坏机理研究[D];浙江工业大学;2012年
9 王英波;钛基羟基磷灰石复合涂层的研究[D];西南交通大学;2010年
10 王勇;钛合金表面激光合成与熔覆稀土生物陶瓷复合涂层的研究[D];重庆大学;2002年
相关硕士学位论文 前10条
1 李英;微纳多级结构钽复合涂层的制备及生物性能研究[D];华南理工大学;2015年
2 欧阳卓;GH4169合金等离子喷涂(MoSi_2-CoNiCrAlY)复合涂层及其高温氧化性能研究[D];华南理工大学;2015年
3 秦丽红;钙磷/壳聚糖复合涂层表面BSA的吸附动力学研究[D];福建医科大学;2015年
4 李闯;激光表面合金化TiAl_3增强铝基复合涂层研究[D];昆明理工大学;2015年
5 黄鹏;新型厚钨复合涂层的制备工艺与性能研究[D];西南交通大学;2015年
6 王攀;TC4合金表面TiO_2/HA复合涂层的制备工艺与性能研究[D];长安大学;2015年
7 张丙明;碳化纤维抗静电复合涂层的制备及性能研究[D];山东大学;2015年
8 耿振;氮弧熔覆TiN-TiB_2/Fe基复合涂层组织与耐磨性研究[D];河北农业大学;2015年
9 王祥;等离子喷涂镍基复合涂层的微观结构及摩擦学行为研究[D];重庆理工大学;2015年
10 张毅;镁合金表面梯度降解生物涂层制备及性能表征[D];重庆理工大学;2015年
,本文编号:2473339
本文链接:https://www.wllwen.com/yixuelunwen/swyx/2473339.html