氯化聚丙烯与甲苯烷基化反应的研究
发布时间:2018-02-26 00:16
本文关键词: 烷基化反应 氯化聚丙烯 稀释比 动力学 红外光谱 核磁共振 凝胶色谱 相容性 出处:《郑州大学》2006年硕士论文 论文类型:学位论文
【摘要】:Friedel-Crafts烷基化反应是有机合成和药物合成中的一类重要反应,有着十分广泛的应用。近年来,一些研究者将其应用到了高分子领域,他们以聚合物作为烷化剂,通过烷基化反应达到对聚合物进行改性的目的,取得了较好的效果。在本文中,选取氯化聚丙烯(CPP)作为烷化剂,重点研究了它与甲苯的烷基化反应的一些规律,建立了动力学模型,希望能通过烷基化反应,用苯环取代CPP分子链上的部分氯原子,改变其分子结构,降低其分子极性,使改性后的CPP与一些树脂的相容性改善,扩大其应用范围。 首先,从两个方面改进了测定氯含量的燃烧-中和法,提出了更为准确更适合于该研究体系的氧瓶燃烧.电位滴定法。一是用电位滴定取代指示剂滴定来确定终点;二是数据处理采用Origin软件拟合滴定曲线方程,由方程参数计算氯含量,求得的结果比微商法更准确。为后文反应动力学的研究奠定了基础。 稀释比是指良溶剂中允许加入非溶剂的最大量。对浓度、温度和氯含量对稀释比的影响规律分别进行了研究,发现稀释比随浓度的增大而减小,随温度的升高而增大,随氯含量的降低而变大。 然后,重点研究了三氯化铝催化下CPP与甲苯的烷基化反应。正交实验表明催化剂用量对反应的影响最大,其次是反应温度和物料配比,反应时间影响最小。进而,测定了一组动力学数据,提出了动力学模型,求得了模型参数,并得到了动力学方程:dx/dt=2.37×10~5×[Cat]~3×exp(48794/RT)×(1-x)~(9.77)。对模型的可靠性也进行了检验。 接着,用三角相图考察了离子液体、甲苯和氯化聚丙烯三元体系的分层区域,用于指导后续实验的设计。研究了离子液体对该反应的催化性能,测定了一组动力学数据,建立了动力学模型,通过数据拟合得到了模型参数和动力学方程:dx/dt=1.62×[Cat]~(2.57)×exp(30159/RT)×(1-x)~(8.45)。该方程与三氯化铝作催化剂时的动力学方程形式相同,都表现出较高的反应级数。另外对离子液体的重复使用性能也进行了讨论。 采用IR和NMR技术证实了苯环基团成功连接到CPP分子链上。用GPC测
[Abstract]:Friedel-Crafts alkylation is one of the most important reactions in organic synthesis and drug synthesis. In recent years, some researchers have applied it to the field of polymer. In this paper, chlorinated polypropylene (CPP) was selected as the alkylating agent, and some rules of alkylation of CPP with toluene were studied. A kinetic model was established to improve the compatibility of the modified CPP with some resins by using benzene ring to replace some chlorine atoms in the molecular chain of CPP, to change its molecular structure, to reduce its molecular polarity, and to improve the compatibility of the modified CPP with some resins through the alkylation reaction. The scope of its application is expanded. Firstly, the combustion-neutralization method for the determination of chlorine content is improved from two aspects, and a more accurate and more suitable oxygen flask combustion-potentiometric titration method is proposed. One is to use potentiometric titration instead of indicator titration to determine the end point. Secondly, the titration curve equation is fitted by Origin software, and the chlorine content is calculated by the parameters of the equation. The results obtained are more accurate than those obtained by the microquotient method, which lays a foundation for the later study of reaction kinetics. Dilution ratio is the maximum amount of non-solvent allowed in a good solvent. The effects of concentration, temperature and chlorine content on the dilution ratio are studied respectively. It is found that the dilution ratio decreases with the increase of concentration and increases with the increase of temperature. The content of chlorine increases with the decrease of chlorine content. Then, the alkylation of CPP with toluene catalyzed by aluminum trichloride was studied. The orthogonal experiment showed that the amount of catalyst had the most influence on the reaction, followed by the reaction temperature and material ratio, and the reaction time was the least. A set of kinetic data was measured, a kinetic model was put forward, parameters of the model were obtained, and the kinetic equation: DX / DT = 2.37 脳 10 ~ (5) 脳 [Cat] 3 脳 exp4794 / RT) 脳 1 ~ (-1) -x ~ (-) -7 ~ (-7) ~ 7 ~ (7). The reliability of the model was also tested. Then, the delamination region of ternary system of ionic liquid, toluene and chlorinated polypropylene was investigated by triangular phase diagram to guide the design of subsequent experiments. The catalytic performance of ionic liquid to the reaction was studied, and a set of kinetic data was determined. A kinetic model was established, and the model parameters and kinetic equation: 1. 62 脳 [Cat] 2. 57) 脳 exp1. 30159 / RT) 脳 1-x ~ (-) ~ (-) ~ (8. 45) are obtained by data fitting. The equation is the same as the kinetic equation when aluminum chloride is used as catalyst. The reusability of ionic liquids is also discussed. IR and NMR techniques were used to confirm that the benzene ring group was successfully connected to the CPP molecular chain. GPC was used to determine the molecular chain.
【学位授予单位】:郑州大学
【学位级别】:硕士
【学位授予年份】:2006
【分类号】:O631
【参考文献】
相关期刊论文 前10条
1 杨辉琼,邓继勇;离子溶液催化合成直链烷基苯[J];湖南工程学院学报(自然科学版);2002年01期
2 范忠雷,刘大壮,赵根锁;氯化聚丙烯与醇酸树脂共混物的红外光谱测定[J];光谱学与光谱分析;2003年03期
3 王光明,焦传英,鲁光英;废塑料聚氯乙烯中氯含量的测定[J];化工时刊;2002年03期
4 王正岩;氯化聚丙烯的生产状况与经济评价分析[J];化工进展;2003年07期
5 徐润华,刘国海,戴猷元;氯化聚丙烯市场与技术分析研究[J];化工新型材料;2002年05期
6 李宏宇,石云革,刘均;氯化聚丙烯的生产应用与市场[J];黑龙江石油化工;2001年02期
7 李汝雄,王建基;离子液体的合成与应用[J];化学试剂;2001年04期
8 吕咏梅;氯化聚丙烯生产、应用与市场[J];中国氯碱;2003年05期
9 徐润华,智海,任俊,徐焕良,熊玉友;氯化聚丙烯技术进展[J];精细化工;1994年02期
10 王洁,李俊萍;氯化石蜡氯含量分析方法的改进[J];氯碱工业;2000年09期
相关硕士学位论文 前1条
1 马向东;氯化聚丙烯接枝物的合成及其与醇酸树脂的相容性[D];郑州大学;2003年
,本文编号:1535744
本文链接:https://www.wllwen.com/falvlunwen/sflw/1535744.html