时间序列分析在经济投资中的研究与应用
[Abstract]:Since the 1980s, the (FDI) activities of foreign direct investment have been increasing day by day, which has gradually become an important form of international capital flow. Driven by FDI, the economy and technology of less developed countries have been rapidly improved. Under the influence of economic globalization and China's reform and opening up strategy, China has become a big country utilizing FDI. Therefore, it is of great significance to study foreign direct investment and make rational and effective decisions in the new period. Time series analysis is a mature discipline based on mathematical statistics, which is widely used in the economic field. Time series analysis can model and predict the situation of foreign direct investment in China, and provide decision basis for the government and investors. In this paper, the time series analysis theory is used to model and predict the situation of foreign direct investment (FDI) in China. The main contents include: 1. The change law of FDI data in our country is deeply studied, and the model is built for it. Through the analysis of the actual data, we can find the law of the development of FDI data over time in our country. Aiming at the problem that FDI data is vulnerable to noise interference, wavelet analysis is used to eliminate the influence of noise on prediction. The MATLAB and Eviews6.0 software are used to simulate the foreign direct investment data in China. The results show that this method is more accurate than the basic time series analysis method. 2. Based on the advantages of linear and nonlinear time series models, the foreign direct investment (FDI) in China is analyzed and modeled. Because the linear model only describes the autocorrelation and ignores the heteroscedasticity, the nonlinear model can solve this problem better. Therefore, the nonlinear model can be added to the linear model to show the variation of FDI data more scientifically and comprehensively. 3. On the basis of time series analysis, intervention analysis is incorporated to make the model more realistic. In real life, economic data may be affected by unexpected events, which will have a negative impact on time series analysis, and intervention model can be used to eliminate the impact of intervention. In view of the impact of economic crisis on FDI data in China, the intervention model is established by using Eviews6.0 software, and the time series model is established for the data after excluding the intervention. Through the comparison of the forecast results, it is found that the intervention analysis reduces the forecast error of the situation of foreign direct investment in China and improves the forecast precision.
【学位授予单位】:沈阳工业大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:F832.6;O211.61;F224
【参考文献】
相关期刊论文 前10条
1 董晓霞;李干琼;刘自杰;;农产品市场价格短期预测方法的选择及应用——以鲜奶零售价格为例[J];山东农业科学;2010年01期
2 李蕊;;VaR方法在开放式基金风险评估中的运用—基于PARCH模型的分析[J];河南城建学院学报;2010年06期
3 曾亮;;基于AR-GARCH模型的城镇职工平均工资实证研究[J];长沙大学学报;2011年02期
4 吴继忠;;GPS观测数据的小波阈值法消噪[J];大地测量与地球动力学;2009年04期
5 陈必焰;戴吾蛟;蔡昌盛;匡翠林;;时间序列与神经网络组合方法在电离层TEC预报中的应用[J];工程勘察;2011年04期
6 谷政;江惠坤;;非平稳时间序列的小波混合方法及其应用[J];系统工程;2008年05期
7 谷政;褚保金;江惠坤;;非平稳时间序列分析的WAVELET—ARMA组合方法及其应用[J];系统工程;2010年01期
8 李东福;董雷;礼晓飞;廖毅;;基于多尺度小波分解和时间序列法的风电场风速预测[J];华北电力大学学报(自然科学版);2012年02期
9 芮执多;;国家物资储备局市场运作的干预模型分析[J];上海经济研究;2009年05期
10 高春玲;;居民消费价格指数预测的分解模型研究——以武汉市时间序列数据为例[J];价格理论与实践;2010年02期
相关硕士学位论文 前7条
1 王颖波;经营系统中的时间序列分析[D];中国科学院研究生院(软件研究所);2003年
2 张燕;金融时间序列分析中的小波方法[D];河海大学;2006年
3 杨韬;论中国利用外资的现状、问题及其对策[D];吉林大学;2006年
4 闫声国;山东利用外商直接投资经济效应的实证分析[D];青岛科技大学;2008年
5 王莎莎;基于小波消噪GARCH模型的汇率波动序列研究[D];山东大学;2009年
6 魏宁;时间序列分析方法研究及其在陕西省GDP预测中的应用[D];西北农林科技大学;2010年
7 赵玮英;时间序列分析在气象中的应用[D];扬州大学;2010年
本文编号:2158222
本文链接:https://www.wllwen.com/guanlilunwen/bankxd/2158222.html