高中数困生数学问题表征的个案研究
本文选题:高中数困生 + 数学问题表征 ; 参考:《广西师范学院》2015年硕士论文
【摘要】:随着高中数学学习的深入,越来越多的学生在数学上的学习障碍也越来越大.为了对数困生的数学学习提出一些有针对性的建议,笔者试图通过研究数困生数学问题表征来找出他们表征上的薄弱点,从而做到对症下药.由于个案研究更富有具象性,更容易反应出学习过程中的一些细小问题,结合实际笔者选取了5名数困生被试,从个案下手,从中找出数困生普遍存在的表征障碍.为了做对比,同时选取5名数优生被试,与另5名数困生一同接受研究.在查阅大量文献及深入思考后,笔者决定采用口语报告法从问题解决的一般模式、问题解决各阶段的语句及时间、问题表征的要素掌握、问题解决涉及的知识结构、问题表征的有效性及答案的得分等六个表征维度对数优生和数困生的问题表征进行对比.这六个表征维度不仅能从口语报告材料中确切得表现出来,也反映了不同学生在数学问题表征上的差异.经过对10名被试逐个分析,发现数困生在数学表征上主要有六个薄弱点.第一,数困生在数学问题表征中容易出现惯性思维,即在解决问题的过程中,只能联想到最近印象最深的相关知识,而不会结合具体问题去具体分析需要用到的那类知识.第二,数困生的数学解题方法过于匮乏,即不懂得结合不同题目的特性去找出最适合的解题方法.第三,数困生在数学上关注点过于单一,即他们考虑数学问题时经常出现过于关注某个点儿而忽略其他需要注意的点,因此导致发现错误发生.第四,数困生的数学知识结构不够完善,即数学知识在他们脑海中是分段的,而不是相互关联的,这不仅会影响知识迁移,同时也会影响数学理论知识的记忆.第五,数困生的数学思维不够清晰,即他们在解题过程中思维没有一条主线,容易出现多条分支,这样造成思维混乱而无从下手.第六,数困生的思维连贯性不够,即在问题解决时常常出现一小段大脑放空状态,而没有将思考问题的思路进行快速连接.
[Abstract]:With the deepening of mathematics learning in senior high school, more and more students have more and more obstacles in mathematics learning. In order to put forward some pertinent suggestions on mathematical learning of lognormal students, the author tries to find out the weak points in their representation by studying mathematical representation of mathematical problems of students with logarithmic difficulties, so as to find the right remedy for the case. Because the case study is more concrete and easy to reflect some small problems in the process of learning, the author selects five students from the case study to find out the common representation obstacles. In order to make a comparison, 5 healthy students were selected and the other 5 poor students were enrolled in the study. After consulting a large number of documents and thinking deeply, the author decided to adopt the oral report method from the general mode of problem solving, the sentences and time of each stage of problem solving, the elements of problem representation, the knowledge structure involved in problem solving. The validity of the problem representation and the score of the answer were compared between the six dimensions of logarithmic eugenics and the number of poor students. These six dimensions of representation can not only be accurately expressed in the oral report materials, but also reflect the differences in the representation of mathematical problems among different students. By analyzing 10 subjects one by one, it was found that there were six weak points in mathematical representation. First, it is easy to appear inertia thinking in the representation of mathematical problems. In the process of solving problems, they can only associate with the most recent most impressive relevant knowledge, and do not combine the specific problems to analyze the kind of knowledge that needs to be used. Secondly, the mathematical problem solving methods of the students with many difficulties are too scarce, that is, they do not know how to combine the characteristics of different problems to find the most suitable problem solving methods. Thirdly, the mathematical focus of the students is too single, that is, they often pay too much attention to one point and ignore the other points that need to be paid attention to when they think about mathematical problems, which leads to the discovery of errors. Fourth, the mathematical knowledge structure is not perfect enough, that is, mathematical knowledge is segmented in their minds, not interrelated, which will not only affect the transfer of knowledge, but also affect the memory of mathematical theoretical knowledge. Fifthly, the mathematical thinking of the students is not clear enough, that is, they do not have a main line of thinking in the process of solving problems, and they are prone to appear many branches, thus causing confusion and no way to start thinking. Sixth, there is not enough coherence in the thinking of the students, that is, when solving problems, there is often a small state of brain emptying, rather than a quick link between thinking about problems.
【学位授予单位】:广西师范学院
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:G633.6
【相似文献】
相关期刊论文 前10条
1 贾文华;;问题表征理论及其对教育教学的影响分析[J];商丘师范学院学报;2009年05期
2 仲宁宁;;浅析小学数学问题表征的研究及其展望[J];艺术科技;2012年03期
3 傅小兰,,何海东;问题表征过程的一项研究[J];心理学报;1995年02期
4 周涛;;数学问题表征策略研究[J];中国数学教育;2014年Z3期
5 姜子云;邓铸;;问题表征与学科问题解决的研究现状及启示[J];徐州师范大学学报(哲学社会科学版);2011年04期
6 姚高文;;几何直观在问题表征中的应用[J];中学数学月刊;2013年11期
7 李万斌;;解题的起点——问题表征[J];新课程(中学);2010年08期
8 耿爱霞;陈清梅;邢红军;;汽车通过黄灯问题的研究及其教学启示——基于原始物理问题表征的视角[J];物理教师;2013年08期
9 张传伟;数学的“问题表征”在“问题解决”中的意义[J];数学通报;2003年12期
10 廖伯琴;中学力学问题表征体系的动态特征[J];心理学报;2001年03期
相关硕士学位论文 前10条
1 贺王架;高中数困生数学问题表征的个案研究[D];广西师范学院;2015年
2 张萍萍;初中生数学问题表征差异性的实证研究[D];东北师范大学;2007年
3 魏萍;高中生物理问题表征差异及其对教学的启示[D];南京师范大学;2007年
4 陈琪;问题表征对高一学生解函数类问题的影响[D];山西师范大学;2015年
5 李芳;高中生化学问题表征中信息识别差异的研究[D];华东师范大学;2007年
6 巫建芬;高中生物理问题表征及其研究[D];苏州大学;2007年
7 贺迎飞;高中生生物学问题表征的理论与实践研究[D];华东师范大学;2008年
8 王起南;应用题解题中的问题表征策略研究[D];华东师范大学;2009年
9 何淑媛;初中物理问题表征的研究[D];江西师范大学;2008年
10 冯美玲;初中生解决平面几何问题表征差异的实验研究[D];天津师范大学;2003年
本文编号:1950212
本文链接:https://www.wllwen.com/jiaoyulunwen/chuzhongjiaoyu/1950212.html