当前位置:主页 > 教育论文 > 初中教育论文 >

基于元认知理论的中职数学学困生成因分析

发布时间:2019-01-06 20:17
【摘要】:随着中国人口逐渐老龄化,劳动力缺乏已经开始影响各行各业的发展,特别是高级技工极其稀少;我国的中职教育以培养高素质的、从事一线生产劳动的人才为主要目的,而数学是一门培养智力发展能力的学科,对于应用型技术人才培养有着不可代替的作用。然而在中职学校学生中,数学学习困难极其普遍,严重阻碍了他们各方面的发展。元认知理论自从被弗拉维尔提出以来,教育学家,心理学家已经对其作了很多研究工作,并且已经运用在了很多基础学科的教学上,在对学习困难研究方面取得了丰硕的成果。本文首先综述了国内外关于元认知和数学学困生转化的已有研究成果,对什么是元认知?元认知在数学教学、数学学习上的相关作用做了简单介绍。然后基于元认知理论编制的调查问卷,对中职学校开设较为普遍、需要一定数学知识基础的机电,数控,会计三个专业的数学学习困难学生做了数学元认知水平问卷调查,并进行了个案访谈,根据调查所得的数据分析及课堂表现观察,总结出他们数学学习困难成因:从元认知知识角度分析:(1)学生对数学的重要性认识不足,对数学学习过程中的知识重点的把握十分欠缺。(2)在解题方面数学思维僵化,只会解固定的数学题型。(3)学习数学定理公式时只会死记硬背,浮于表面。从元认知体验角度分析:(1)由于长期的抄袭作业,很少从做题中获得成就感。(2)对数学学习的信心不足,在学习数学的过程中自暴自弃。(3)数学学习困难时间较长,导致害怕做数学题,讨厌上数学课,体会不到学习数学的快乐。从元认知监控角度分析:(1)数学学习习惯态度差,缺少课前预习课后复习,及学后反思的过程,同时更很少对自己的数学学习过程中的好坏做出评价。(2)数学课堂自我监控能力不强,时常开小差,做其它事情。(3)平时做数学题题量较少,缺少或者没有解题的必要的思维过程。针对以上原因,本文结合中职数困生的实际情况以及元认知教学理论总结出对他们转化的教学建议,主要有:(1)教师要把元认知理论运用到教学过程中去,从而提高他们的元认知知识水平;(2)在教学中帮助学生建立良好的数学学习心理,从而使学生获得积极的元认知体验;(3)在教学中要注重数学问题解决教学,及正确数学学习行为的养成这两个方面从而提高元认知监控水平。
[Abstract]:With the aging of China's population, the shortage of labor force has begun to affect the development of various industries, especially senior skilled workers are extremely scarce; The main purpose of secondary vocational education in our country is to train high-quality talents who are engaged in first-line productive labor. Mathematics is a discipline for cultivating the ability of intellectual development, which plays an irreplaceable role in the cultivation of applied technical talents. However, mathematics learning difficulties are very common among secondary vocational school students, which seriously hinder their development. Since the theory of metacognition was put forward by Flavier, educators and psychologists have done a lot of research on it, and have applied it to the teaching of many basic subjects, and have made fruitful achievements in the study of learning difficulties. This paper first summarizes the existing research results on metacognition and transformation of mathematics learning difficulties at home and abroad, what is metacognition? Metacognition in mathematics teaching, mathematics learning in the role of a brief introduction. Then the questionnaire based on metacognitive theory is used to survey the mathematics metacognition level of students with mathematics learning difficulties in three major, namely electromechanical, numerical control and accounting, which are common in secondary vocational schools and need some mathematical knowledge. According to the data analysis and classroom performance observation, the causes of their mathematics learning difficulties are summarized: (1) the importance of mathematics is not well understood by the students from the perspective of metacognitive knowledge. (2) the mathematical thinking is rigid in solving problems, and it can only solve fixed mathematical problem types. (3) when learning the formula of mathematical theorem, it can only memorize by rote and float on the surface. Analysis from the perspective of metacognitive experience: (1) due to long-term plagiarism, rarely from the problem of achievement. (2) lack of confidence in mathematics learning, In the process of learning mathematics, self-abdication. (3) Mathematics learning difficulties for a long time, resulting in fear of doing math problems, hate math classes, can not feel the joy of learning mathematics. From the perspective of metacognitive monitoring: (1) poor attitude towards mathematics learning habits, lack of pre-class review after class, and the process of reflection after learning, At the same time, there is less evaluation of the process of mathematics learning. (2) the ability of self-monitoring in mathematics classroom is not strong, often deserting, doing other things. (3) the amount of math problems is less. A necessary process of thinking that lacks or does not solve a problem. In view of the above reasons, combining with the actual situation of secondary vocational school students and the theory of metacognitive teaching, this paper summarizes the teaching suggestions on their transformation, mainly as follows: (1) the teachers should apply metacognitive theory to the teaching process. In order to improve their metacognitive knowledge; (2) helping students to establish good psychology of mathematics learning in teaching, so that students can get positive metacognitive experience; (3) in order to improve the level of metacognitive monitoring, we should pay attention to the teaching of mathematical problem-solving and the cultivation of correct mathematical learning behavior.
【学位授予单位】:扬州大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:G633.6

【相似文献】

相关期刊论文 前10条

1 马建梅;基于元认知理论的写作及写作教学[J];当代教育论坛;2005年20期

2 徐冻梅;元认知、元认知策略与大学英语听力教学[J];新疆石油教育学院学报;2005年02期

3 张胜华;;元认知及其对教育的启示[J];贵州工业大学学报(社会科学版);2006年01期

4 邹佳丽;;解读元认知理论指导下的音乐教师教育[J];当代教育论坛(校长教育研究);2008年10期

5 王瑾;;元认知策略与非英语专业研究生听力教学[J];镇江高专学报;2009年04期

6 王立皓;汪凤炎;;西方的元认知与儒家的自省:概念比较[J];现代教育管理;2010年03期

7 王菲菲;杨雪;黄海林;;我国元认知理论与实践研究综述[J];高教研究与实践;2012年03期

8 张菊花;李黄川;;元认知策略研究的现状及思考[J];重庆第二师范学院学报;2013年03期

9 郑士平;数学教学中元认知心理开发与运算能力培养[J];教育科学;1992年01期

10 吴斐;;元认知策略视域下的翻译实践研究[J];鸡西大学学报;2014年03期

相关会议论文 前10条

1 陈布;孟明惠;;元认知理论在教育心理学中的重要意义[A];中国心理卫生协会第四届学术大会论文汇编[C];2003年

2 马达;;元认知与音乐学习[A];第一届全国音乐心理学学术研讨会论文集[C];2003年

3 王洋;;元认知理论及其对少数民族汉语教学的思考[A];中国英汉语比较研究会第七次全国学术研讨会论文集[C];2006年

4 洪俊彬;;元认知策略在大学英语听力教学中的运用[A];福建省外国语文学会2008年年会论文集[C];2008年

5 梁,

本文编号:2403273


资料下载
论文发表

本文链接:https://www.wllwen.com/jiaoyulunwen/chuzhongjiaoyu/2403273.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1cf78***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com