当前位置:主页 > 教育论文 > 小学教育论文 >

高年级小学生代数思维的测试与分析

发布时间:2018-05-19 02:11

  本文选题:代数思维 + 水平 ; 参考:《华中师范大学》2017年硕士论文


【摘要】:古老传统的数学发展至今,代数仍然是至关重要的一部分.随着计算机等科学技术的普及,代数在各行各业发展中有着不可或缺的基础作用.思维的发展能够更好地培养人对事物本质的认识,而小学生正处于思维高速发展的时期,本文测试分析高年级小学生代数思维发展情况,旨在为代数思维的培养方向提供可行的数据支持.本研究分为六章:第一章引言,从代数的重要性方面来论述研究的背景、主要内容和方法.第二章研究综述,整理现有文献对代数思维的研究主要有三个方面:对代数思维核心概念的研究;对算术思维与代数思维的过渡研究;对代数思维培养的研究.在认识前人对代数思维的理解和研究成果的基础上对与代数思维相关的早期代数进行评述概括,分析出代数思维的核心特点.第三章测试量表的选取与优化,结合第二章的文献综述选取符合本文研究目的的代数思维结构模型,对模型进行改进使其更加合理,并对每个指标进行高低分层,形成测试高年级小学生代数思维的量表.第四章测试方案设计与实施,根据第三章的测试量表初步设计测试卷,再试测对测试卷进行微调,形成正式的测试卷,最后选择合适对象进行测试.第五章测试结果与分析,利用统计软件先对测试卷的信度和结构效度进行分析,得知测试卷比较可靠.再对代数思维整体水平、各因子各指标的发展水平、相关性、差异性进行分析,得到主要结果有:(1)高年级小学生已经萌发了代数思维.规律、表征、方程、函数思维基本达到低层次水平;表征、算律、方程、函数思维的高低水平得分有显著的差距,存在较大的上升空间;算律和逆算思维处在较低的水平,还需要加强.(2)代数思维发展水平受年级因素的显著影响,随着年级的上升代数思维发展水平逐渐提高;与性别、年龄无显著差异.(3)代数思维发展与数学成绩有显著的正相关关系,三个因子有较弱的正相关关系,每个因子下属两个指标之间中度相关.第六章结论与展望,叙述研究的主要成果、存在的问题和进一步的研究方向.
[Abstract]:Algebra is still a vital part of the development of ancient mathematics. With the popularization of computer science and technology, algebra plays an indispensable role in the development of various industries. The development of thinking can better train people to understand the essence of things, while the pupils are in the period of rapid development of thinking. This paper tests and analyzes the development of algebraic thinking of senior primary school students. The aim is to provide feasible data support for the cultivation of algebraic thinking. This research is divided into six chapters: the first chapter introduces the background, main contents and methods of the research from the importance of algebra. In the second chapter, there are three main aspects: the research on the core concepts of algebraic thinking; the transition between arithmetic thinking and algebraic thinking; and the research on the cultivation of algebraic thinking. On the basis of understanding the previous understanding and research achievements of algebraic thinking, the early algebraic thinking related to algebraic thinking is reviewed and summarized, and the core characteristics of algebraic thinking are analyzed. The selection and optimization of the third chapter test scale, combined with the literature review of the second chapter, select the algebraic thinking structure model which is in line with the purpose of this paper, improve the model to make it more reasonable, and layer each index. To form a scale to test the algebraic thinking of senior pupils. The fourth chapter is the design and implementation of the test scheme. According to the preliminary design of the third chapter of the test scale, the test volume is fine-tuned to form a formal test volume. Finally, the appropriate subjects are selected to test. In the fifth chapter, the reliability and structural validity of the test volume are analyzed by statistical software, and the results show that the test volume is reliable. Then it analyzes the whole level of algebraic thinking, the development level, correlation and difference of each index, and obtains the main result: 1) Algebraic thinking has been germinated in the senior primary school students. The law, representation, equation, function thought basically reached the low level; the representation, the calculation law, the equation, the function thought level score has the remarkable disparity, has the big rise space, the arithmetic law and the inverse calculation thought are in the lower level, It is also necessary to strengthen the development level of algebraic thinking. The development level of algebraic thinking is significantly affected by the factors of grade, and the level of development of algebraic thinking increases gradually with the increase of grade. There was no significant difference in age. (3) there was a significant positive correlation between the development of algebraic thinking and mathematical achievement, and there was a weak positive correlation among the three factors, and there was a moderate correlation between two indexes under each factor. In chapter 6, the conclusion and prospect, the main achievements, the existing problems and the further research direction are described.
【学位授予单位】:华中师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:G623.5

【参考文献】

相关期刊论文 前10条

1 杨琼;;探究小学生代数思维的培养[J];数学学习与研究;2016年06期

2 雍俊;;聚焦思维发展:从算术思维走向代数思维——方程教学中的问题及启示[J];小学教学(数学版);2016年03期

3 孙敏;尹志伟;;从“算术思维”到“代数思维”——中小学数学教学衔接点之一[J];教育研究与评论(小学教育教学);2016年01期

4 刘久成;刘久胜;;代数思维及其教学[J];课程.教材.教法;2015年12期

5 李保贤;;中学生代数思维的形成研究[J];亚太教育;2015年31期

6 石保艮;;海州地区小学生代数思维水平的调查研究[J];小学教学参考;2015年29期

7 张天孝;姜荣富;;“新思维小学数学”介绍 小学生代数思维萌发的实验研究(六)——结构意识的启蒙[J];小学数学教师;2014年09期

8 蒲淑萍;;国外“早期代数”研究述评[J];数学教育学报;2014年03期

9 章勤琼;谭莉;;早期代数思维的培养:小学阶段“数与代数”教学的应有之义[J];江苏教育;2013年33期

10 徐文彬;;如何在算术教学中也教授代数思维[J];江苏教育;2013年33期

相关硕士学位论文 前6条

1 潘园园;小学“数与代数”教学的意义建构研究[D];河北师范大学;2015年

2 马婧茹;六年级学生从算术思维到代数思维的发展探究[D];上海师范大学;2015年

3 占云萍;七年级学生代数思维发展的研究[D];华中师范大学;2014年

4 王中慧;代数思维在六年级应用题教学中的研究[D];上海师范大学;2013年

5 任敏龙;小学数学“图形等式推算与代数模式建构”的实验研究[D];杭州师范大学;2011年

6 周颖娴;初一学生从算术思维过渡到代数思维中的困难分析[D];苏州大学;2009年



本文编号:1908242

资料下载
论文发表

本文链接:https://www.wllwen.com/jiaoyulunwen/xiaoxuejiaoyu/1908242.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9c8c3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com