中国碳强度影响因素长期均衡与动态分析
发布时间:2019-02-23 17:57
【摘要】:选择人均GDP、能源强度、第二产业比重等三个影响因素变量,采用协整理论和误差修正模型分析中国碳强度与三个影响因素变量之间的长期均衡关系,再运用VAR模型的脉冲响应与方差分析等方法分析人均GDP、第二产业比重、能源强度对碳强度的动态影响。研究表明:从长期看,这三个因素对碳强度均产生正影响,其中能源强度对碳强度的影响最大;从动态影响来看,第二产业比重对碳强度影响最明显。因此,降低能源强度和第二产业比重能有效地减少碳强度,特别是调整降低第二产业比重既能提高能源利用率,同时又能减少碳强度。
[Abstract]:In this paper, GDP, energy intensity per capita and the proportion of secondary industry are selected to analyze the long-term equilibrium relationship between China carbon intensity and the three factors by using cointegration theory and error correction model. Then the impulse response and variance analysis of VAR model are used to analyze the dynamic effects of GDP, secondary industry specific gravity and energy intensity on carbon intensity per capita. The results show that, in the long run, these three factors have positive effects on carbon intensity, among which energy intensity has the greatest influence on carbon intensity, and the second industry specific gravity has the most obvious effect on carbon intensity from the dynamic point of view. Therefore, reducing energy intensity and secondary industry proportion can effectively reduce carbon intensity, especially adjust and reduce secondary industry proportion can not only improve energy efficiency, but also reduce carbon intensity at the same time.
【作者单位】: 安徽财经大学统计与应用数学学院;
【基金】:国家社会科学基金青年项目《中国节能减排效率评价及影响因素研究》(09CTJ008) 国家自然科学基金项目《基于数据包络分析的环境效率评价方法及其应用研究》(71171001)
【分类号】:X196;F224
[Abstract]:In this paper, GDP, energy intensity per capita and the proportion of secondary industry are selected to analyze the long-term equilibrium relationship between China carbon intensity and the three factors by using cointegration theory and error correction model. Then the impulse response and variance analysis of VAR model are used to analyze the dynamic effects of GDP, secondary industry specific gravity and energy intensity on carbon intensity per capita. The results show that, in the long run, these three factors have positive effects on carbon intensity, among which energy intensity has the greatest influence on carbon intensity, and the second industry specific gravity has the most obvious effect on carbon intensity from the dynamic point of view. Therefore, reducing energy intensity and secondary industry proportion can effectively reduce carbon intensity, especially adjust and reduce secondary industry proportion can not only improve energy efficiency, but also reduce carbon intensity at the same time.
【作者单位】: 安徽财经大学统计与应用数学学院;
【基金】:国家社会科学基金青年项目《中国节能减排效率评价及影响因素研究》(09CTJ008) 国家自然科学基金项目《基于数据包络分析的环境效率评价方法及其应用研究》(71171001)
【分类号】:X196;F224
【参考文献】
相关期刊论文 前4条
1 岳超;胡雪洋;贺灿飞;朱江玲;王少鹏;方精云;;1995—2007年我国省区碳排放及碳强度的分析——碳排放与社会发展Ⅲ[J];北京大学学报(自然科学版);2010年04期
2 王锋;冯根福;;优化能源结构对实现中国碳强度目标的贡献潜力评估[J];中国工业经济;2011年04期
3 张友国;;经济发展方式变化对中国碳排放强度的影响[J];经济研究;2010年04期
4 林伯强;刘希颖;;中国城市化阶段的碳排放:影响因素和减排策略[J];经济研究;2010年08期
【共引文献】
相关期刊论文 前10条
1 王浩;;河南省农民增收与经济增长关系的实证研究[J];安徽农业科学;2010年34期
2 高阳;冯U,
本文编号:2429068
本文链接:https://www.wllwen.com/jingjilunwen/jjsxs/2429068.html