当前位置:主页 > 经济论文 > 旅游经济论文 >

基于灰色系统和神经网络的旅游需求预测

发布时间:2018-09-12 14:07
【摘要】:改革开放后,旅游业作为一项高产出、低投入、全球经济发展最快的朝阳产业,如雨后春笋般在全国各地悄然崛起。伴随着社会经济的稳步发展,旅游需求也在不断增长。深入研究国内旅游需求、准确分析当前需求现状并预测未来国内旅游市场的变化,,不仅对旅游资源的开发利用和环境建设相当重要,对于政府扩大内需和相关扶持性政策的制定以及国民经济持续快速发展也至关重要。 目前已建立的惯用的旅游需求模型包括时间序列预测模型和回归模型,对于其他领域广泛应用的灰色模型和人工神经网络模型则应用不多。尽管这些模型均可用于这方面预测,但具体运用哪一种进行旅游预测分析始终没有一个固定的、统一的套用格式。本文采用灰色系统理论、马尔科夫方法、BP神经网络理论和组合模型方法对国内旅游需求进行建模和分析。 首先采用定性分析法对旅游需求的四个影响因素做了分析,从机理上揭示出国内旅游人数与居民收入、旅游服务、旅游环境和道路交通状况之间的关系。 其次采用灰关联分析法定量地描述各影响因素对国内旅游人数的影响程度大小。并用GM(1,1)模型和GM-Markov模型对旅游需求的时间序列进行预测。 再次从旅游需求时间序列本身和影响因素多序列各自出发用BP神经网络模型进行预测。 最后将BP神经网络与用马尔科夫修正的灰色模型进行有机地结合,建立了灰色神经网络组合模型,用于旅游人数预测,通过旅游人数的实际时间序列资料来分析模型的预测精度。并与单一的BP神经网络和灰色GM(1,1)模型等预测方法进行比较。结果表明:GM-Markov模型预测的MAPE为2.5134,单变量BPNN模型预测的MAPE为1.5224,多变量BPNN模型预测的MAPE为1.9509,三种模型并联后的组合模型预测的MAPE为1.4085,串联后的组合模型预测的MAPE为1.5993。 由此反映出组合模型能够取众长补己短,且具有所需时间序列信息量少与预测精度高等双重优点,其预测结果具有一定的参考价值。
[Abstract]:After the reform and opening up, tourism as a high output, low investment, the world's fastest economic development sunrise industry, such as bamboo shoots in all over the country quietly rising. With the steady development of social economy, tourism demand is also increasing. It is very important not only for the development and utilization of tourism resources and the construction of environment, but also for the further study of domestic tourism demand, the accurate analysis of the current situation of demand and the prediction of the changes in the domestic tourism market in the future. It is also important for the government to expand domestic demand and related supportive policies, as well as the sustained and rapid development of the national economy. The established tourism demand models include time series prediction model and regression model, but they are not widely used in other fields such as grey model and artificial neural network model. Although these models can be used to predict this aspect, there is no fixed and uniform format for tourism prediction analysis. In this paper, the grey system theory, Markov method, BP neural network theory and combination model method are used to model and analyze the domestic tourism demand. Firstly, the qualitative analysis method is used to analyze the four influencing factors of tourism demand, and the relationship between domestic tourism population and residents' income, tourism service, tourism environment and road traffic condition is revealed from the mechanism. Secondly, grey correlation analysis is used to quantitatively describe the influence of various factors on the number of domestic tourism. GM model and GM-Markov model are used to predict the time series of tourism demand. Thirdly, the BP neural network model is used to predict the time series of tourism demand and the multiple series of influencing factors. Finally, combining BP neural network with Markov modified grey model organically, a grey neural network combination model is established, which can be used to predict the number of tourists. The prediction accuracy of the model is analyzed by using the actual time series data of the tourist population. It is compared with single BP neural network and grey GM (1 ~ 1) model. The results show that the MAPE predicted by the w / GM-Markov model is 2.5134, the MAPE predicted by the single variable BPNN model is 1.5224, the MAPE predicted by the multivariable BPNN model is 1.9509, the MAPE predicted by the combined model is 1.4085, and the MAPE predicted by the series combined model is 1.5993. The result shows that the combined model can compensate for the short and the short, and has the advantages of less time series information and high prediction accuracy. The prediction results have certain reference value.
【学位授予单位】:东华理工大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:F224;F592

【参考文献】

相关期刊论文 前10条

1 朱湖英;许春晓;;不同收入城市居民文化旅游需求差异研究——以长沙市不同收入居民对凤凰古城的旅游需求为例[J];长沙大学学报;2006年01期

2 卞显红;旅游者目的地选择影响因素分析[J];地理与地理信息科学;2003年06期

3 牛亚菲;旅游供给与需求的空间关系研究[J];地理学报;1996年01期

4 韩雪;;基于参数选取影响BP神经网络训练结果的分析[J];智能计算机与应用;2011年05期

5 陈淑燕,王炜;交通量的灰色神经网络预测方法[J];东南大学学报(自然科学版);2004年04期

6 刘富刚;旅游需求影响因素分析[J];德州学院学报(自然科学版);2004年04期

7 王冰山;王志辉;;用JAVA实现BP算法[J];鄂州大学学报;2005年06期

8 陈子锦;王福亮;陆守香;;灰色预测模型GM(1,1)的适用性分析及在火灾风险预测中的应用[J];中国工程科学;2007年05期

9 毛占利;朱毅;杨伯忠;朱磊;;火灾事故的灰色-马尔可夫模型预测研究[J];中国工程科学;2010年01期

10 关宏志,任军,刘兰辉;旅游交通规划的基础框架[J];北京规划建设;2001年06期

相关硕士学位论文 前4条

1 王丽铭;旅游产业集聚区发展的动力机制研究[D];北京交通大学;2011年

2 郭华勤;国内旅游内上市公司投资价值测度研究[D];兰州理工大学;2011年

3 牟洁;基于神经网络和灰色系统的水质预测研究[D];天津大学;2010年

4 张婷;基于灰色神经网络组合模型的能源需求预测[D];天津大学;2007年



本文编号:2239247

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/lyjj/2239247.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户017a1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com