当前位置:主页 > 科技论文 > 交通工程论文 >

钢管混凝土拱桥转体施工控制研究

发布时间:2018-11-05 11:22
【摘要】:在很多施工场地受限制的情况下,采用转体施工是一种很好的方法。桥梁转体施工,是利用桥梁结构本身及结构用钢作为转体设施,利用较小摩擦系数的滑道和合理的转盘结构,以简单的牵引设备,利用两岸的地形和简单支架预制拼装桥梁结构,整体旋转一定的角度后安装到位。因其与其他的施工方案相比,能有效节省施工用材,减少施工设备,施工快速安全,其中最为突出的特点是施工的过程中能直接跨越不利的地形,对线下的结构影响较小。本文以漳州市闽江路钢管混凝土拱桥为工程背景,进行转体施工技术研究,,为以后类似的钢管混凝土拱桥的转体施工设计计算提供参考。 (1)根据漳州市闽江路钢管砼拱桥具体工程实例,采用ANSYS有限元软件进行球铰结构局部实体有限元分析得到,球铰在转体前和转体过程中,各部位应力有所增加,但增量较小。采用的平面转铰结构,转动接触对的摩擦系数只有0.06,对于转动过程中球铰各部位应力增量贡献较小。通过MIDAS/Civil有限元软件进行的转动体系有限元分析得到,临时塔架最大应力出现在与背墙的连接处,转体过程拱肋内力和应力较小,变形较小。在正式转体前,通过现场收集的材料参数,进行理论重心计算。在转动牵引力的计算中,考虑中心支撑和中心、环道共同支撑两种情况。 (2)由于闽江路钢管砼拱桥为转体施工的钢管混凝土拱桥,在转体过程中需要保证转体各构件的安全稳定,在转动到位后要严格控制合龙口的标高,保证拱桥顺利合龙,因此进行施工监控是十分必要的。转体施工监控结果表明,拱顶靠近合龙口位置的标高与考虑预拱度设计值之差在1cm以内,符合较好,拱肋应力监控结果与有限元计算相一致。在正式转体前制定具体称重方案,由于该钢管砼拱桥采用的平面转铰结构,在平衡称重方案上与球面转铰结构不同,在具体称重过程中需要变换施加荷载的位置。 (3)采用MIDAS/Civil有限元软件建立钢管混凝土拱桥全桥杆系有限元模型,通过有限元模型和规范相关内容,对钢管混凝土主拱进行结构内力计算,包括主拱承载能力极限状态下构件和结构整体计算,和主拱正常使用极限状态下拱肋挠度和钢管应力计算,计算结果均满足规范要求。同时,进行了成桥后的吊杆索力检测、静动载试验,检测结果与理论计算相一致,符合设计的要求。
[Abstract]:Under the condition that many construction sites are restricted, it is a good method to use rotary construction. The bridge rotation construction is to use the bridge structure itself and the structure with steel as the turning device, using the sliding path with small friction coefficient and the reasonable turntable structure, with simple traction equipment, The bridge structure is prefabricated and assembled by using the topography and simple support of both sides, and the whole rotation angle is fixed and installed in place. Compared with other construction schemes, it can save construction materials effectively, reduce construction equipment, and construct quickly and safely. The most prominent feature is that it can directly cross unfavorable terrain in the construction process, and has little influence on the structure below the line. Based on the concrete filled steel tube (CFST) arch bridge of Minjiang Road in Zhangzhou City, this paper studies the technology of rotary construction, and provides a reference for the design and calculation of similar CFST arch bridge in the future. The main contents are as follows: (1) based on the concrete filled steel tube arch bridge of Minjiang Road in Zhangzhou City, the local solid finite element analysis of spherical hinge structure is carried out by using ANSYS finite element software. But the increment is small. The friction coefficient of the rotating contact pair is only 0.06, which has little contribution to the stress increment of each part of the spherical hinge. Through the finite element analysis of rotational system carried out by MIDAS/Civil finite element software, it is found that the maximum stress of the temporary tower appears at the junction with the back wall, and the internal force and stress of the arch rib are smaller and the deformation is smaller during the rotation process. Before the formal rotation, the theoretical center of gravity is calculated through the material parameters collected on the spot. In the calculation of rotational traction, the central support and central support are considered. (2) because the concrete filled steel tube arch bridge of Minjiang Road is a concrete filled steel tube arch bridge constructed by rotation, it is necessary to ensure the safety and stability of each component of the rotation in the process of rotation, and to strictly control the elevation of the closed Longkou after rotation, so as to ensure the smooth closure of the arch bridge. Therefore, construction monitoring is very necessary. The results of rotating construction monitoring show that the difference between the elevation of the arch roof near the joint port and the design value of considering the pre-arch is within 1cm, which is in good agreement with the stress monitoring results of the arch rib and the finite element calculation. The concrete weighing scheme is formulated before the formal rotation. Because the plane pivot structure used in the concrete filled steel tube arch bridge is different from the spherical rotary hinge structure in the balance weighing scheme, it is necessary to change the position of load applied in the concrete weighing process. (3) the finite element model of the whole bridge system of CFST arch bridge is established by using MIDAS/Civil finite element software, and the internal force of the main arch of CFST arch is calculated through the finite element model and the relevant contents of the code. The calculation includes the integral calculation of the member and structure under the limit state of the main arch's bearing capacity and the calculation of the deflection of the arch rib and the stress of the steel tube under the limit state of normal use of the main arch. The calculated results meet the requirements of the code. At the same time, the cable force test and static and dynamic load test are carried out after the completion of the bridge. The test results are consistent with the theoretical calculation and meet the design requirements.
【学位授予单位】:长安大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U445.465

【参考文献】

相关期刊论文 前9条

1 刘雪锋;田仲初;颜东煌;丁毅;;竖直提升转体施工拱桥的提升索力分析[J];长沙交通学院学报;2006年02期

2 王元清;姜波;石永久;张勇;;大跨度钢管混凝土拱桥施工稳定性分析[J];铁道科学与工程学报;2006年05期

3 陈富强;夏培华;;运梁河特大桥转体梁不平衡重称重试验分析[J];中国港湾建设;2012年03期

4 范金军,邱文亮,张哲;丹东月亮岛大桥施工过程中的稳定性分析[J];公路;2003年05期

5 陈宝春,孙潮,陈友杰;桥梁转体施工方法在我国的应用与发展[J];公路交通科技;2001年02期

6 李晓辉;陈宝春;;大跨径拱桥的发展[J];世界桥梁;2007年01期

7 董卫莹;王鸿;;浅谈桥梁中心水平转体施工中转动体系的安装方法[J];黑龙江交通科技;2011年07期

8 汪存书;;朝天门长江大桥主桥上构总体施工方案比选[J];山西建筑;2009年07期

9 徐学斌;;桥梁转体施工[J];科学之友;2012年06期



本文编号:2311905

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/2311905.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户221e1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com