当前位置:主页 > 科技论文 > 力学论文 >

完全湍流剪切层对圆柱涡激振动特性的影响

发布时间:2018-03-19 14:22

  本文选题:涡激振动 切入点:质量阻尼比 出处:《哈尔滨工业大学学报》2017年01期  论文类型:期刊论文


【摘要】:为研究完全湍流剪切层(2×10~4~4×10~4Re1×10~5~2×10~5)下雷诺数对涡激振动动态响应的影响,在OpenFOAM平台下采用有限体积法求解雷诺平均Navier-Stokes方程和Spalart-Allmaras一方程湍流模型,采用二阶范德波尔方程描述二维圆柱体涡激振动,对完全湍流剪切层下的圆柱绕流涡激振动进行数值计算,分析涡激振动的振幅、频率特性,并在Williamson-Roshko(W-R)图谱中分析旋涡尾迹脱落模式.结果表明:在相同折减速度下提升雷诺数时,圆柱振幅会显著增大,最大振动振幅值高于自由剪切层过渡旋涡区结果及修正Griffin图谱结果.雷诺数对提高圆柱的涡激振动振幅和同步区的范围具有决定性作用,在完全湍流剪切层中,当提升阻尼参数(α≥0.38)时,涡激振动的上部分支消失,振动频率出现"阶跃".
[Abstract]:In order to study the effect of Reynolds number on the dynamic response of vortex-induced vibration in a completely turbulent shear layer of 2 脳 10 ~ (4) Re1 脳 10 ~ (5) Re2 脳 10 ~ (5), the Reynolds mean Navier-Stokes equation and the turbulent model of Spalart-Allmaras _ (-) equation are solved by finite volume method on the OpenFOAM platform. The second order Van der Bohr equation is used to describe the vortex-induced vibration of a two-dimensional cylindrical body. The vortex-induced vibration around a cylinder in a completely turbulent shear layer is numerically calculated, and the amplitude and frequency characteristics of the vortex-induced vibration are analyzed. The vortex wake shedding model is analyzed in the Williamson-Roshkoo W-R) atlas. The results show that the amplitude of the cylinder increases significantly when the Reynolds number is raised at the same reduction speed. The maximum vibration amplitude is higher than that of the free shear layer transition vortex region and the modified Griffin diagram. Reynolds number plays a decisive role in increasing the amplitude of vortex-induced vibration and the range of the synchronous region of the cylinder, and in the completely turbulent shear layer, the maximum vibration amplitude is higher than that in the free shear layer. When the lifting damping parameter (伪 鈮,

本文编号:1634647

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/lxlw/1634647.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1647c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com