基于多材料匹配的车身关键吸能结构轻量化设计研究
[Abstract]:With the wide application of new lightweight materials in automobile, especially high strength steel and aluminum alloy are widely used in the key energy absorption structure of automobile body due to their excellent energy absorption characteristics and light weight effect. Therefore, the matching problem between lightweight materials with different yield strength is always a hot topic. The key energy absorption structure is an important part to ensure the passive safety performance of the vehicle. The lightweight design of the body structure is carried out at different stages of the development of the vehicle body, and the crashworthiness of the structure must be guaranteed at the same time. In the conceptual design stage, the design cycle is relatively short, the cost and lightweight effect should be taken into account, and the material scheme should be determined quickly. Multi-stage energy-absorbing thin-walled beam is usually composed of multi-segment thin-walled beam by welding or bolting, which is the most important energy absorption component in the front and back end of automobile impact crushing zone. A large number of expensive physical experiments or time-consuming simulation optimization are not ideal to determine the material scheme, but the empirical formula rule can help the designer to determine the material scheme quickly and scientifically under certain precision conditions. In the detailed design stage, the body structure and the material scheme have been basically determined, at this time, we can make the thickness matching between the parts more reasonable and achieve further lightweight design under the premise of ensuring the performance of the body through the optimization algorithm. Therefore, in order to shorten the design period of this stage, choosing an optimization algorithm with high search efficiency and high precision has become an urgent problem to be solved in engineering. In the conceptual design stage, the problem of how to choose the most reasonable thickness after replacing the multistage energy-absorbing thin-walled beam with lightweight material not only ensures the crashworthiness of the structure but also achieves the best lightweight effect. A multi-material matching method based on empirical formula is proposed. The application of this method to the combination of square energy absorption box and single cap front beam shows that the average collision force error before and after material exchange is basically controlled within 10%, and the material combination of aluminum alloy and duplex steel has the best lightweight effect. The weight loss is 34. 4%. In addition, in addition to the need to focus on lightweight effects also need to consider cost factors. Therefore, the value function is introduced to evaluate the comprehensive performance of different material matching schemes, in order to help automobile enterprises to choose the best material matching scheme according to their own development needs. Finally, the influence of exchange constant on the material selection scheme is analyzed by using the previous examples. The results show that the value of the exchange constant is related to whether the automaker pays more attention to the light weight effect or the cost, and determines the best material matching scheme. In the detailed design phase, aiming at the complex and time-consuming black box optimization problem, based on the hybrid meta-model algorithm (Hybrid and Adaptive Meta-modeling Method,HAM), an optimization method of multi-group hybrid element model with higher searching efficiency and precision is proposed, (Multiple Hybrid Meta-modeling Method,MHM). Finally, the method is applied to the thickness matching optimization of the key energy absorption components of a front cabin subsystem. The results show that compared with the original design mass, the mass decreases by 5.4 kg, and the ratio of decrease reaches 7.2%, while the energy absorption characteristics of the key energy absorption components do not decrease and the acceleration peak of the whole subsystem does not increase. In this paper, the main body development process is taken as the main line, and different multi-material matching methods are adopted to design the key energy absorption structure in different stages of development. Through the research of this paper, a new way of thinking is provided for the lightweight design of automobile body, which has good engineering application value.
【学位授予单位】:湖南大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U463.82
【相似文献】
相关期刊论文 前10条
1 刘青;;汽车轻量化设计的技术路线分析[J];客车技术与研究;2011年06期
2 王宏雁,徐少英;车门的轻量化设计[J];汽车工程;2004年03期
3 肖献法;;探析商用车轻量化设计的动力与着眼点[J];商用汽车;2008年08期
4 莫海鹰;;客车轻量化设计技术探讨[J];城市车辆;2009年10期
5 罗朝晖;李纪雄;;混合动力旅游客车整车轻量化设计[J];客车技术与研究;2011年02期
6 汪海朋;;轻量化设计在混凝土搅拌运输车上的应用[J];商用汽车;2013年08期
7 苏亮;黄登峰;吴长风;;有限元分析在客车轻量化设计中的应用[J];客车技术与研究;2013年05期
8 陈乐强;房继刚;王淑丽;许夏;;整体前桥全承载车型轻量化设计与分析[J];客车技术与研究;2014年01期
9 邬晴晖;城市客车的结构轻量化设计[J];机械设计与制造;2005年08期
10 王帅;;专用汽车轻量化设计的研究[J];装备制造技术;2013年11期
相关会议论文 前10条
1 曾小利;孙俊文;毛显红;;某型轿车后扭力梁结构轻量化设计[A];2012重庆汽车工程学会年会论文集[C];2012年
2 曾小利;孙俊文;毛显红;;某型轿车后扭力梁结构轻量化设计[A];西南汽车信息:2012年下半年合刊[C];2012年
3 马瑞雪;王欣;覃祯员;张科峰;;汽车前桥的仿真分析及结构轻量化设计[A];2012重庆汽车工程学会年会论文集[C];2012年
4 张鹏超;;传动花键副的改进创新及轻量化设计运用[A];第八届河南省汽车工程科技学术研讨会论文集(下)[C];2011年
5 张科峰;李_";王欣;马瑞雪;颜长征;;汽车座椅出口认证轻量化设计[A];2012重庆汽车工程学会年会论文集[C];2012年
6 张科峰;李_";王欣;马瑞雪;颜长征;;汽车座椅出口认证轻量化设计[A];西南汽车信息:2012年下半年合刊[C];2012年
7 王洪印;;汽车轻量化设计理念[A];绿色制造与低碳经济——2010年海南省机械工程学会、海南省机械工业质量管理协会“年会”暨机械工程科技学术报告会论文集[C];2010年
8 李洪波;周维林;;重型汽车车架轻量化设计[A];2010重庆汽车工程学会年会论文专辑[C];2010年
9 马喜岭;张鹏超;陈云升;;汽车传动轴轻量化设计运用[A];西南汽车信息:2010年下半年合刊[C];2010年
10 马喜岭;张鹏超;陈云升;;汽车传动轴轻量化设计运用[A];第七届河南省汽车工程科技学术研讨会论文集[C];2010年
相关博士学位论文 前1条
1 胡朝辉;面向汽车轻量化设计的关键技术研究[D];湖南大学;2010年
相关硕士学位论文 前10条
1 黄德辉;某微车车门的CAE分析和轻量化设计[D];重庆大学;2015年
2 何龙军;汽车典型零部件的轻量化设计[D];福州大学;2014年
3 王学军;一种新型推板式自装卸环卫车开发[D];山东大学;2016年
4 许东阳;基于多材料匹配的车身关键吸能结构轻量化设计研究[D];湖南大学;2016年
5 郭乃文;载重80吨自翻车结构分析及轻量化设计的研究[D];北京交通大学;2009年
6 王其光;翼展车厢有限元分析与轻量化设计[D];烟台大学;2007年
7 黄武龙;基于等效静态载荷方法的大型复杂结构的轻量化设计[D];广东工业大学;2013年
8 王玺文;基于汽车碰撞安全性的多材料混合轻量化设计[D];湖南大学;2014年
9 李超;采用拼焊结构的汽车车门轻量化设计方法研究[D];湖南大学;2011年
10 吴春虎;轻型货车驱动桥壳结构分析及轻量化设计[D];山东大学;2011年
,本文编号:2283191
本文链接:https://www.wllwen.com/kejilunwen/qiche/2283191.html