当前位置:主页 > 科技论文 > 施工技术论文 >

转换层对高层建筑结构抗震性能的影响研究

发布时间:2018-01-14 04:16

  本文关键词:转换层对高层建筑结构抗震性能的影响研究 出处:《华南理工大学》2013年硕士论文 论文类型:学位论文


  更多相关文章: 地震波 小波调整 转换层位置 自振特性 时程分析法 PUSHOVER 抗震性能 破坏形式


【摘要】:转换层结构是当今实际工程中应用最广泛的结构形式之一,转换层结构被越来越多的用于各种场合,本文研究了转换层位置的改变对结构抗震性能和破坏形式的影响。主要的研究工作和成果如下: 1、通过使用MATLAB编程,对四类不同场地上的地震波进行了小波调整,验证了本文的小波调整方法对任何场地上的地震波都适用,可以把不同场地上的地震波调整到指定场地上并满足建筑结构的需要,并且对小波调整后的地震波与未调整的地震波的结构地震响应计算结果进行比较,从而验证了小波调整后的地震波的响应值在各个方面均与反应谱法具有较小的离散性,,能够满足结构时程分析的需要,更真实的反应了结构在地震作用下的响应大小。 2、对其他条件相同、转换层位置不同的结构进行了多遇地震下的弹性响应时程分析,得到了转换层位置变化对结构自振特性和抗震性能的影响。结果表明:最大层间位移角值随着转换层位置的升高而增大,但是转换层以下楼层的层间位移角值随着转换层位置的升高而减小;高位转换层与低位转换层相比,转换层是更容易发生破坏的位置,更容易成为结构的薄弱层。转换层位置变化时,变化范围以外的其他楼层的层剪力变化很小,变化范围内的层剪力变化较大;转换层位置变化时,转换层以下楼层框支柱承担的层剪力与该层总剪力的比值随楼层位置的升高而减小,但是在转换层处该比值突然增大,使得转换层处的框支柱的剪力有可能大于首层的框支柱剪力。在转换层及其上面一层,层剪力的分配并不完全是按照刚度分配,应该是按照就近原则把剪力分配在了转换梁上下的构件之中。 3、通过时程分析法和PUSHOVER法对结构进行了弹塑性分析,研究了转换层位置的改变对结构耗能和破坏形式的影响。结果表明:随着转换层位置的改变,转换层上下部位构件的破坏趋势是相反的;改变转换层的位置能够改变结构的破坏机制,并且影响结构的延性;结构进入塑性后,转换层上部构件的塑性铰发展程度及塑性铰的转动位移随着转换层的升高而降低;低位转换时,结构在塑性破坏下转换层上、下的层间位移角突变现象消失,而当高位转换时时,转换层上、下的层间位移角突变现象仍然存在,且随着结构破坏的发展,突变的程度越来越严重;当低位转换时,结构耗能主要靠转换层上部结构,当高位转换时,结构耗能主要靠转换层下部结构。
[Abstract]:Transfer layer structure is one of the most widely used structural forms in practical engineering nowadays. The transfer layer structure is more and more used in various situations. In this paper, the influence of the change of the transfer floor position on the seismic performance and failure form of the structure is studied. The main research work and results are as follows: 1. By using MATLAB programming, the wavelet adjustment of seismic waves on four different sites is carried out, which verifies that the wavelet adjustment method in this paper is applicable to seismic waves on any site. The seismic wave on different sites can be adjusted to the designated site to meet the needs of the building structure, and the results of seismic response calculation of the wavelet adjusted seismic wave and the unadjusted seismic wave can be compared. It is verified that the response value of the seismic wave adjusted by wavelet is less discrete than the response spectrum method in all aspects, and it can meet the needs of structural time history analysis. A more realistic reflection of the response of the structure to earthquakes. 2. For other structures with the same conditions and different positions of the transfer layer, the elastic response time history analysis is carried out under the frequent earthquake. The effect of the change of the transfer layer position on the natural vibration characteristics and seismic performance of the structure is obtained. The results show that the maximum interstory displacement angle increases with the increase of the transfer layer position. However, the interstory displacement angle of the floor below the transfer floor decreases with the increase of the transfer floor position. Compared with the low conversion layer, the high transfer layer is more prone to damage, more easily become the weak layer of the structure. When the position of the transfer layer changes, the shear force of the other floors outside the range of change is very small. In the range of variation, the shear force of the layer changes greatly; When the position of the transfer layer changes, the ratio of the floor shear force to the total shear force of the floor frame pillar under the transfer layer decreases with the increase of the floor position, but the ratio increases suddenly at the transfer layer. It is possible that the shear force of the frame support at the transfer floor is greater than that of the frame support at the first floor. In the transfer layer and its upper layer, the distribution of the floor shear force is not completely according to the stiffness distribution. The shear force should be distributed in the upper and lower parts of the transfer beam according to the principle of proximity. 3. The elastic-plastic analysis of the structure is carried out by time history analysis and PUSHOVER method. The influence of the position of the transfer layer on the energy consumption and the failure form of the structure is studied. The results show that with the change of the position of the transfer layer, the failure trend of the upper and lower parts of the transfer layer is opposite; Changing the position of the transfer layer can change the failure mechanism of the structure and affect the ductility of the structure. When the structure enters plasticity, the development degree of plastic hinge and the rotational displacement of plastic hinge decrease with the increase of transfer layer. During the low level conversion, the displacement angle of the lower layer disappears when the structure is on the transfer floor under the plastic failure, but when the high level is converted, the phenomenon of the displacement angle of the lower layer still exists at the top and bottom of the transfer layer. With the development of structural damage, the degree of mutation becomes more and more serious. The energy consumption of the structure mainly depends on the superstructure of the transfer layer when the low level is converted, and the energy consumption of the structure mainly depends on the substructure of the transfer layer when the high level is converted.
【学位授予单位】:华南理工大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TU973.31

【参考文献】

相关期刊论文 前10条

1 张家华,吕志涛,朱筱俊;关于转换层结构时程分析的计算建议[J];东南大学学报;1997年S1期

2 王亚勇,白雪霜;台湾921地震中钢筋混凝土结构震害特征[J];工程抗震;2001年01期

3 刘杨,沈蒲生;地震作用下转换层上、下结构侧向刚度对框支剪力墙受力性能的影响[J];工程抗震与加固改造;2005年03期

4 沈蒲生;刘杨;;水平地震作用下底部多层大空间框支剪力墙结构中落地剪力墙合理数量研究[J];工程抗震与加固改造;2006年01期

5 沈蒲生;廖志;;含壁式框架的底层大空间高层建筑中落地剪力墙合理数量的确定方法[J];工程力学;1989年02期

6 曲哲;叶列平;;基于有效累积滞回耗能的钢筋混凝土构件承载力退化模型[J];工程力学;2011年06期

7 韩小雷;何慧贤;田小霞;季静;郑宜;;转换层结构楼层侧向刚度的有害位移角控制法[J];华南理工大学学报(自然科学版);2008年10期

8 徐培福,王翠坤,郝锐坤,肖从真;转换层设置高度对框支剪力墙结构抗震性能的影响[J];建筑结构;2000年01期

9 陈纯森;台湾集集大地震高层建筑倒塌破坏与混凝土施工之探讨[J];建筑结构;2002年01期

10 王森,魏琏;不同高位转换层对高层建筑动力特性和地震作用影响的研究[J];建筑结构;2002年08期



本文编号:1421979

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/sgjslw/1421979.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户fc378***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com