基于长短时记忆神经网络的鄱阳湖水位预测
发布时间:2021-11-11 16:20
湖泊水位是维持其生态系统结构、功能和完整性的基础.鄱阳湖受流域"五河"和长江来水双重影响,水位变化复杂.为了准确预测鄱阳湖水位变化,采用长短时记忆神经网络方法(LSTM)构建了鄱阳湖水位预测模型.该模型以赣江、抚河、信江、饶河和修水"五河"入湖流量和长江干流流量作为输入条件,预测鄱阳湖湖区不同代表站(湖口、星子、都昌、吴城和康山)的水位过程.研究以1956—1980年的水文时间序列数据作为训练集,1981—2000年作为验证集,探讨了LSTM模型输入时间窗、隐藏神经元数目、初始学习率等模型参数对预测精度的影响,并确定了鄱阳湖水位预测模型的最优参数.结果表明,采用LSTM神经网络方法可基于流域"五河"和长江来水量历时数据合理预测鄱阳湖不同湖区的水位过程,五站水位预测的均方根误差为0.41~0.50 m,纳什效率系数和决定系数达0.96~0.98.为考察模型训练数据集对鄱阳湖水位预测结果的影响,进一步选取了随机5年(1956—1960年)的资料和5个典型水文年(1954年、1973年、1974年、1977年和1978年)的日均流量资料来训练模型.结果显示随机5年资料作为训练数据的预测精度要...
【文章来源】:湖泊科学. 2020,32(03)北大核心EICSCD
【文章页数】:12 页
本文编号:3489165
【文章来源】:湖泊科学. 2020,32(03)北大核心EICSCD
【文章页数】:12 页
本文编号:3489165
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/3489165.html