支持近似计算的近阈值系统多目标优化(英文)
发布时间:2025-06-04 00:09
登纳德缩放定律的失效使计算机系统面临功耗和利用率双重挑战。让晶体管在近阈值电压附近工作,能够有效解决能耗墙问题。然而,电压降低会引发错误,导致可靠性问题。若在解决电压降低带来的副作用的同时确保系统完全正确,又会额外减损系统性能,增加能耗。由此可见,计算机系统设计的目标已从简单的性能优化发展到多目标综合优化。本文提出一种通过有效识别系统最佳配置实现性能、能耗和可靠性的综合优化方法。设计了输出精度预测器、性能预测器和功耗预测器,分别预测不同系统配置下的精度、性能和功耗。其中输出质量预测器采用软硬件协同的故障注入平台,分析近阈值电压导致的错误对输出精度的影响。采用多目标优化动态规划模型,基于所设计的输出精度预测器、性能预测器和功耗预测器,选择系统最佳的电压和近似级别。实验结果显示本文方案在能效性下降10%的情况下将输出精度提高28%,从而实现平均20%的精度、功耗和性能的综合优化。
【文章页数】:17 页
【文章目录】:
1 Introduction
2 Multi-dimensional optimization framework
2.1 Output quality predictor
2.1.1 Output quality analysis
2.1.2 Fault injection platform
2.2 Energy predictor design
2.2.1 Power model
2.2.2 Neural network parser
2.3 Performance predictor
3 Optimization
4 Evaluation
4.1 Experiment setup and metrics
4.2 Application resilience and energy-efficiency analysis
4.3 Optimization results and analysis
4.3.1 Low-power case study
4.3.2 High performance case study
4.3.3 Power breakdown analysis
5 Related work
6 Conclusions
Contributors
Compliance with ethics guidelines
本文编号:4049019
【文章页数】:17 页
【文章目录】:
1 Introduction
2 Multi-dimensional optimization framework
2.1 Output quality predictor
2.1.1 Output quality analysis
2.1.2 Fault injection platform
2.2 Energy predictor design
2.2.1 Power model
2.2.2 Neural network parser
2.3 Performance predictor
3 Optimization
4 Evaluation
4.1 Experiment setup and metrics
4.2 Application resilience and energy-efficiency analysis
4.3 Optimization results and analysis
4.3.1 Low-power case study
4.3.2 High performance case study
4.3.3 Power breakdown analysis
5 Related work
6 Conclusions
Contributors
Compliance with ethics guidelines
本文编号:4049019
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/4049019.html