微生物组学中的高维计数和成分数据分析
发布时间:2018-07-16 12:47
【摘要】:人体微生物组对人体健康和疾病起着重要作用.高通量测序技术的发展使得我们可以定量分析微生物组中所有菌种的成分.本文回顾近来在微生物组学研究中的高维计数和成分数据分析方法,其中包括Dirichlet多项分布模型及其拓展、从大维稀疏计数矩阵估计成分数据、高维成分回归和基于对数基底的成分数据统计推断方法.
[Abstract]:Microorganism plays an important role in human health and disease. The development of high-throughput sequencing technology has made it possible to quantify the composition of all microbes. In this paper, we review the recent methods of high-dimensional counting and component data analysis in microflora, including the Dirichlet multi-term distribution model and its extension, and estimate the component data from the large dimensional sparse counting matrix. High dimensional component regression and statistical inference method based on logarithmic basis.
【作者单位】: 北京大学数学科学学院;北京大学定量生物学中心;北京大学统计科学中心;
【基金】:国家重大科学研究计划(批准号:2015CB910303) 国家重点研发计划(批准号:2016YFA0502303) 国家自然科学基金(批准号:31471246)资助项目
【分类号】:O212;Q933
,
本文编号:2126436
[Abstract]:Microorganism plays an important role in human health and disease. The development of high-throughput sequencing technology has made it possible to quantify the composition of all microbes. In this paper, we review the recent methods of high-dimensional counting and component data analysis in microflora, including the Dirichlet multi-term distribution model and its extension, and estimate the component data from the large dimensional sparse counting matrix. High dimensional component regression and statistical inference method based on logarithmic basis.
【作者单位】: 北京大学数学科学学院;北京大学定量生物学中心;北京大学统计科学中心;
【基金】:国家重大科学研究计划(批准号:2015CB910303) 国家重点研发计划(批准号:2016YFA0502303) 国家自然科学基金(批准号:31471246)资助项目
【分类号】:O212;Q933
,
本文编号:2126436
本文链接:https://www.wllwen.com/kejilunwen/yysx/2126436.html