当前位置:主页 > 社科论文 > 法治论文 >

水热法制备铜基磁性纳米结构及其磁性研究

发布时间:2018-05-10 05:47

  本文选题:纳米结构材料 + 溶剂热 ; 参考:《安徽大学》2011年硕士论文


【摘要】:由于在建筑、装饰、国防和磁存储等一系列日常生活领域中有着重要的应用,金属及合金材料一直在被广泛的制备研究。另外,伴随着技术提高和社会需求的增加,新材料的制备显得越来越急切。水热技术作为先进纳米材料制备的最重要方法之一,因其在制备技术上的优势,在电子、光电、催化、陶瓷、磁性数据存储、生物医学、生物光子学等各种材料的制备方面发挥着举足轻重的作用。水热技术不仅可以制备单分散性好、纳米尺寸均匀的优质纳米材料,而且还是实现纳米掺杂和复合纳米材料制备的最具竞争力的技术之一。此外,一些常规反应条件(如:温度、压强等)已经越来越不能满足当前科技发展的需求。磁场作为一种常见的能量供给系统,常被用作磁性材料性能的检测,而在本文中磁场将被尝试用作调控材料结构和性能的手段,去调控磁性纳米粒子的晶体生长习性和微观结构,最终获得性能优越的新型纳米材料。现将详细内容归纳如下: 1.论文的第一部分主要探究了磁场下水热制备CuNi合金纳米材料的生长机理,并对其样品与无磁场下样品作了对比。研究发现,外加磁场不但能够影响水热制备过程的动力学行为,还对其组分、微观结构和自组装行为产生影响。本章将从晶核形成、晶体生长以及对比不同实验结论的角度去探讨外加磁场对水热体系下制备纳米合金过程的作用和影响。 2.在论文的第二部分,我们研究了水热条件下铜铁氧体粉体材料的制备,研究了不同络合剂对铜铁氧体成相的影响情况,明确了铜铁氧体实验中络合剂选择的标准,同时讨论了磁场对铁氧体性能的影响。铁氧体是一种在高频弱电领域用途广泛的非金属磁性材料,但因单位体积中储存的磁能和饱和磁化强度较低,限制了它在高磁能密度的低频强电和大功率领域的应用。本文将通过研究水热条件下,外加磁场对完全正型结构铁氧体(以铜铁氧体为例)性能的影响,探讨提高铁氧体磁性能的方法,并对试验结果作了相关说明和讨论,这对今后铁氧体材料磁性能的强化研究起到基础性的研究意义。 3.在这一部分,我们在180℃条件下利用磁场诱导在水热体系中合成了一维链状Ni0.33Co0.67合金结构和线状Ni0.67Co0.33合金结构,通过X射线衍射分析、场扫描电子显微镜和高倍透射电子显微镜对样品的结构和形貌进行了分析,另外通过与无外磁场所得样品的磁滞回线的比较,我们发现磁场下所得样品具有更高的饱和磁化强度、剩余磁化强度、矫顽力和剩磁比,在此基础上我们提出了可以解释磁场下粒子生长集聚活动的一个可能微观机理。 4.在论文的第四部分,我们探讨了水热体系下,利用简单溶剂水、乙醇和铜片制备氧化铜纳米结构阵列的制备过程,通过对比不同溶剂下所得氧化铜形貌和性质的,探讨了不同形貌下氧化铜性质的异同,并为其他金属氧化物半导体的制备指明了一条经济适用的制备方法。
[Abstract]:Because of the important applications in a series of daily life fields, such as architecture, decoration, defense and magnetic storage, metal and alloy materials have been widely studied. In addition, with the increase of technology and the increase of social demand, the preparation of new materials is becoming more and more urgent. The most important of the preparation of advanced nano materials is hydrothermal technology. One of the methods, because of its advantages in preparation technology, plays an important role in the preparation of various materials such as electronic, photoelectric, catalysis, ceramics, magnetic data storage, biomedicine, biophotonics and so on. One of the most competitive technologies prepared by hybrid and composite nanomaterials. In addition, some conventional reaction conditions, such as temperature, pressure, etc., have become increasingly unable to meet the needs of current scientific and technological development. As a common energy supply system, magnetic fields are often used as a detection of magnetic properties, and in this article the magnetic field will be tried as a test. The means of regulating the structure and properties of materials to regulate the crystal growth habits and microstructure of magnetic nanoparticles, and finally obtain new nanomaterials with superior performance. The details are summarized as follows:
1. the first part of the paper mainly explores the growth mechanism of CuNi alloy nanomaterials prepared by magnetic field and hot water, and compares the samples with those without magnetic field. It is found that the applied magnetic field can not only affect the dynamic behavior of the hydrothermal preparation process, but also influence its composition, microstructure and self-assembly behavior. The effects of external magnetic field on the preparation of Nanocrystalline Alloys under hydrothermal conditions are discussed from the perspective of nucleation, crystal growth and comparison of different experimental conclusions.
2. in the second part of the paper, we studied the preparation of copper ferrite powders under hydrothermal conditions, studied the effect of different complexing agents on the phase formation of copper ferrite, clarified the standard of the selection of complexing agents in the copper ferrite experiment, and discussed the effect of magnetic field on the performance of ferrite. A wide range of non-metallic magnetic materials, but the low magnetic and saturation magnetization stored in unit volume limits its application in the field of low frequency strong power and high power in high magnetic energy density. In this paper, the effect of applied magnetic field on the performance of fully positive structure ferrite (with copper ferrite as an example) under hydrothermal conditions is discussed in this paper. The method of the magnetic properties of high ferrite has been explained and discussed, which is of fundamental significance for the study of the strengthening of the magnetic properties of ferrite materials in the future.
3. in this part, we synthesized one dimensional chain Ni0.33Co0.67 alloy structure and linear Ni0.67Co0.33 alloy structure in the hydrothermal system under the condition of 180 C, and analyzed the structure and morphology of the sample by X ray diffraction analysis, field scanning electron microscope and high transmission electron microscope. Compared with the hysteresis loop of the samples obtained from the external magnetic field, we find that the samples obtained in the magnetic field have higher saturation magnetization, residual magnetization, coercive force and remanence ratio. On this basis, we propose a possible micro mechanism to explain the activity of particle growth under magnetic field.
4. in the fourth part of the paper, we discuss the preparation process of copper oxide nanostructure arrays prepared by simple solvent water, ethanol and copper sheet under the hydrothermal system. By comparing the morphology and properties of copper oxide under different solvents, the similarities and differences of the properties of copper oxide under different morphologies are discussed, and the preparation of other metal oxide semiconductors is also prepared. A method of preparation for economic application is pointed out.

【学位授予单位】:安徽大学
【学位级别】:硕士
【学位授予年份】:2011
【分类号】:TB383.1

【参考文献】

相关期刊论文 前5条

1 钟世安;胡启明;古映莹;;磁场对水热法制备锰锌铁氧体锰价态的影响[J];电子元件与材料;2006年04期

2 肖顺华;姜卫粉;李隆玉;李新建;;铜铁氧体纳米晶的溶胶-凝胶自蔓延燃烧法合成和表征[J];功能材料;2007年10期

3 侯雪玲;胡星浩;汪学真;曾智;徐晖;周邦新;;低磁场下获得巨磁热效应的GdSiGeZn合金[J];上海大学学报(自然科学版);2010年01期

4 景红霞;李巧玲;王永飞;李海燕;裴王军;;柠檬酸溶胶凝胶法制备纳米Co_(1-x)Ni_xFe_2O_4铁氧体[J];中国粉体工业;2008年06期

5 赵林;樊占国;杨中东;高鹏;秦高梧;;磁场下电沉积制备CuCo颗粒膜的巨磁电阻效应[J];中国有色金属学报;2009年05期

相关博士学位论文 前1条

1 倪小敏;磁性金属镍、钴纳米组装结构的控制合成与性质研究[D];中国科学技术大学;2006年

相关硕士学位论文 前1条

1 李加新;尿素熔盐中稀土—铁族金属合金膜的电沉积及磁特性研究[D];福建师范大学;2008年



本文编号:1868030

资料下载
论文发表

本文链接:https://www.wllwen.com/shekelunwen/minzhuminquanlunwen/1868030.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5d1fe***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com