MIRT补偿模型与非补偿模型的比较研究及其应用
[Abstract]:In this paper, by using BMIRT software, we set up different experimental conditions: sample size (1000 and 3000) 脳 subject quantity (25 and 50) 脳 ability correlation (0. 3 and 0. 7) to simulate the generation of multi dimensional three parameter compensation data and non compensation data. The multi-dimensional three parameter compensation model and the non-compensation model are used to estimate the parameters. By comparing the RMSE values of the project parameters and the capability parameters, the parameter fidelity comparison between the multi-dimensional compensation model and the non-compensation model under various experimental conditions is realized. The results show that the parametric fidelity of the three-parameter multi-dimensional compensation model is better than that of the three-parameter multi-dimensional non-compensation model, regardless of whether it is the estimation of the multi-dimensional compensation data or the non-compensated data. In particular, when estimating multidimensional compensation data, the capability parameter RMSE estimated by the three-parameter multi-dimensional compensation model is almost half of that of the three-parameter multi-dimensional non-compensation model, which is significantly better than the capability parameter fidelity of the three-parameter non-compensation model estimation. The multi-dimensional item response theory compensation model and the non-compensation model are also applied to the Raven advanced reasoning test. It is found that the multidimensional compensation model fits better than the multidimensional non-compensation model. In this study, the multidimensional item response theory compensation model was used to deeply analyze the advanced Raven reasoning test, and to explore the quality, difficulty and cognitive components of the Raven advanced reasoning test. The results show that the overall classification of Raven advanced reasoning test is good and the project difficulty increases with the increase of item order. In the five ability dimensions, the difficulty of cognitive components in the Raven Advanced reasoning Test was increased by A / S / C / PPD _ 3 and D _ 2 respectively. Finally, on the basis of multi-dimensional compensation model and non-compensation model to estimate the ability parameters of the Raven advanced reasoning test, the interaction between the ability of the participants in solving the Raven advanced reasoning test items is analyzed. The results show that there is a mutual compensation relationship between CR,PP and D3 ability and between A / S and D _ 2 ability in solving Raven advanced reasoning test items. Finally, this paper points out the deficiency of this research and puts forward the prospect of future research.
【学位授予单位】:江西师范大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:B841
【参考文献】
相关期刊论文 前10条
1 戴海崎,刘声涛;瑞文测验项目认知难度因素分析及LLTM拟合验证[J];心理与行为研究;2004年02期
2 黎光明;张敏强;;先验信息对MCMC方法估计概化理论方差分量变异量的影响[J];统计与决策;2012年07期
3 翟洪昌;瑞文高级推理测验国家公务员测试结果的分析[J];心理科学;1999年02期
4 甘媛源;余嘉元;;改进3PL模型参数估计的MCMC算法[J];心理科学;2010年05期
5 陈德枝;戴海琦;丁树良;;基于IRT模型的儿童图形推理能力动态评估研究[J];心理科学;2011年01期
6 张敏强;简小珠;陈秋梅;;规则空间模型在瑞文智力测验中的认知诊断分析[J];心理科学;2011年02期
7 张厚粲,王晓平;瑞文标准推理测验在我国的修订[J];心理学报;1989年02期
8 罗照盛,漆书青,戴海琦,丁树良;项目反应理论多级记分模型参数估计的实现[J];心理学报;2003年04期
9 肖玮;苗丹民;朱宁宁;张青华;;应用项目反应理论创建图形推理测验题库[J];心理学报;2006年06期
10 李中权;王力;张厚粲;周仁来;;不同认知成分在图形推理测验项目难度预测中的作用[J];心理学报;2011年09期
相关博士学位论文 前3条
1 刘声涛;几何类比推理测验用于认知诊断的可行性研究[D];江西师范大学;2007年
2 周骏;矩阵完成问题的项目生成研究[D];江西师范大学;2008年
3 付志慧;多维项目反应模型的参数估计[D];吉林大学;2010年
本文编号:2426709
本文链接:https://www.wllwen.com/shekelunwen/xinlixingwei/2426709.html