混合误差下非参数及部分线性模型中估计量的渐近性质
发布时间:2025-03-30 05:30
回归分析是用来确定随机变量之间关系的一种统计工具。当研究者试图确定随机变量之间的因果关系时会使用回归模型。为了探讨这些问题,研究者将所观察到的有关潜在变量的数据集合起来,并使用回归分析来估计解释变量对因变量的量化效应。本文讨论了三种不同的回归模型:非参数回归模型、部分线性回归模型和异方差部分线性回归模型。本文主要研究非参数和部分线性回归模型在相依误差下的估计量的渐近性质。考虑了与上述主题相关的三个问题。首先,我们研究了固定设计非参数回归模型中相依误差的影响。在一些宽泛的条件下,我们得到了固定设计非参数回归模型中加权估计量的完全相合性和渐近正态性。此外,本文还对估计量的有限样本行为进行了模拟研究,并给出了估计量的实际数据应用。接下来,我们研究了如下部分线性回归模型的一致性,Y(j)(xin,tin)=tinβ+g(xin)+e(j)(xin),1≤j≤k,1≤i≤n,基中xin∈Rp,tin∈R是非随机的,g(·)是RP中的紧集A上的一个未知连续函数,e(j)(xin)是零均值的(α,β)混合随机误差,Y(j)(xin,tin)是可以在点xin和点tin处观测到的随机变量n通过使用概率不等...
【文章页数】:135 页
【学位级别】:博士
【文章目录】:
Acknowledgements
摘要
abstract
Chapter 1. Introduction
1.1 Research Background
1.1.1 Nonparametric Regression Model
1.1.2 Partially Linear Regression Models
1.1.3 Mixing Sequences
1.2 Outline of Thesis
Chapter 2. Preliminaries
2.1 Estimation
2.2 Assumptions
Chapter 3. Complete consistency and asymptotic normality for the weightedestimator in a nonparametric regression model under dependent errors
3.1 Main Results
3.2 Proofs of Main Results
3.3 Simulations
3.4 Real Data Analysis
Chapter 4. Consistency properties for the estimators of partially linear regres-sion model under dependent errors
4.1 Main Results
4.2 Proofs of Main Results
4.3 Numerical simulations
4.4 Real Data Analysis
Chapter 5. Asymptotic normality for the weighted estimators in heteroscedasticpartially linear regression model under dependent errors
5.1 Main Results
5.2 Proofs of Main Results
5.3 Numerical simulations
5.4 Real data analysis: Oil price and exchange rate
Chapter 6. Conclusion and future research
References
Publications
Profile
本文编号:4038263
【文章页数】:135 页
【学位级别】:博士
【文章目录】:
Acknowledgements
摘要
abstract
Chapter 1. Introduction
1.1 Research Background
1.1.1 Nonparametric Regression Model
1.1.2 Partially Linear Regression Models
1.1.3 Mixing Sequences
1.2 Outline of Thesis
Chapter 2. Preliminaries
2.1 Estimation
2.2 Assumptions
Chapter 3. Complete consistency and asymptotic normality for the weightedestimator in a nonparametric regression model under dependent errors
3.1 Main Results
3.2 Proofs of Main Results
3.3 Simulations
3.4 Real Data Analysis
Chapter 4. Consistency properties for the estimators of partially linear regres-sion model under dependent errors
4.1 Main Results
4.2 Proofs of Main Results
4.3 Numerical simulations
4.4 Real Data Analysis
Chapter 5. Asymptotic normality for the weighted estimators in heteroscedasticpartially linear regression model under dependent errors
5.1 Main Results
5.2 Proofs of Main Results
5.3 Numerical simulations
5.4 Real data analysis: Oil price and exchange rate
Chapter 6. Conclusion and future research
References
Publications
Profile
本文编号:4038263
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/4038263.html