基于要素的词汇量可扩展的手语手势动作识别方法研究
[Abstract]:Sign language gesture recognition is designed to translate gesture action into text or speech form to enhance communication between deaf and normal people. At the same time, gesture recognition technology also plays an indispensable role in the application of human-computer interaction system. From the practical point of view, the sign-language translation device designed to meet the needs of the deaf and mute should meet the basic requirements of portability, recognizable vocabulary of a certain scale, high recognition efficiency and low cost. Gesture recognition technology based on surface electromyography accelerometer and gyroscope has the potential to realize practical sign language translation system. Although some progress has been made in the exploration of gesture recognition based on surface electromyography and motion sensors, this technique is still far from being applied: on the one hand, The current research on sign language gesture recognition based on this technology is limited in the number of hand words, only a few dozen, which can not meet the needs of daily communication. On the other hand, most of the current gesture recognition algorithms are implemented under user related conditions, and the user training burden under large vocabulary recognition will limit the practicability of the technique. In order to solve the problem of sign language gesture recognition based on surface electromyography and motion sensor, this paper proposes a new method of hand gesture recognition based on the fusion of surface electromyography and accelerometer, and the vocabulary of gyroscope sensor. The method uses the idea that gesture action can be divided into many basic elements, and realizes gesture word recognition with large vocabulary by small scale gesture element recognition. The results show that the proposed scheme can greatly reduce the user training burden under the condition of large vocabulary recognition and thus promote the development of practical sign language translation technology. The main work of this paper can be summarized as follows: (1) from the hand type, orientation, axial direction, direction and trajectory, which can effectively describe the characteristics of sign language gesture execution, this paper comprehensively analyzes the changes of each element in the process of hand gesture execution. In this paper, a gesture coding scheme is proposed to examine gesture elements in segments. (2) based on the feature based gesture coding, an extended vocabulary gesture recognition scheme is proposed. Firstly, the subclass of gesture elements is determined by referring to the subject data, and the target gesture set is encoded by each gesture element, and the target gesture set coding table is constructed. Then, based on the characteristics of surface electromyography, accelerometer and gyroscope signal, the feature extraction and classifier design of gesture elements are carried out. Furthermore, gesture recognition with large vocabulary under less training burden is realized by the recognition and coding matching of gesture elements. (3) 110 common Chinese hand words are taken as the target gesture set. The feasibility of the extended vocabulary gesture recognition scheme is verified on the data of five subjects (Sub3 and Sub5 respectively as reference subjects). The experimental results show that when the training set size is about one third of the target gesture set, The average recognition rate of target gesture set was (82.6 卤13.2)% (with Sub3 as reference) and (79.7-t-13.4)% (with Sub5 as reference). When the training set size was about 1 / 2 of target gesture set, The average recognition rate of target gesture set was (88 13.7)% (with Sub3 as reference) and (86.3 13. 7)% (with Sub5 as reference).
【学位授予单位】:中国科学技术大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:H026.3
【参考文献】
相关期刊论文 前10条
1 陶美平;马力;黄文静;吴雨隆;;基于无监督特征学习的手势识别方法[J];微电子学与计算机;2016年01期
2 吕蕾;张金玲;朱英杰;刘弘;;一种基于数据手套的静态手势识别方法[J];计算机辅助设计与图形学学报;2015年12期
3 陈小辉;高燕;;基于优化欧氏距离的协同过滤推荐[J];计算机与现代化;2015年03期
4 雷春丽;芮执元;李鄂民;;基于组合模型的电主轴热误差预测[J];南京理工大学学报;2012年06期
5 赵玉娟;刘擎超;;基于混合多距离度量的多分类器加权集成研究[J];计算机工程;2012年21期
6 陈意;杨平;陈旭光;;一种基于加速度特征提取的手势识别方法[J];传感技术学报;2012年08期
7 杨大鹏;赵京东;李楠;姜力;刘宏;;基于预抓取模式识别的假手肌电控制方法[J];机械工程学报;2012年15期
8 顾春荣;;肌电信号在智能轮椅中的应用[J];电脑知识与技术;2012年22期
9 刘玉朝;杨娜;刘雅;;用爱守护天使[J];河北画报;2012年07期
10 荆雷;马文君;常丹华;;基于动态时间规整的手势加速度信号识别[J];传感技术学报;2012年01期
相关博士学位论文 前6条
1 李云;基于肌电模式的中国手语识别研究及康复应用探索[D];中国科学技术大学;2013年
2 成娟;基于表面肌电和加速度信号融合的动作识别和人体行为分析研究[D];中国科学技术大学;2013年
3 黄鹏程;基于多点连续肌电控制的仿生康复手关键技术研究[D];浙江工业大学;2013年
4 张旭;基于表面肌电信号的人体动作识别与交互[D];中国科学技术大学;2010年
5 李强;表面肌电信号的运动单位动作电位检测[D];中国科学技术大学;2008年
6 何乐生;基于肌电信号的人机接口技术的研究[D];东南大学;2006年
相关硕士学位论文 前7条
1 曹翔;可穿戴手语翻译器研制[D];中国科学技术大学;2015年
2 谢飞;基于主题模型的人物行为识别[D];苏州大学;2014年
3 张迪;情绪脑电特征识别与跨模式分析[D];天津大学;2014年
4 龚静;动态手势识别的研究与应用[D];西安电子科技大学;2013年
5 尚小晶;肌电-运动关系建模与运动模式识别研究[D];吉林大学;2012年
6 常亚南;基于HMM的动态手势识别[D];华南理工大学;2012年
7 邹洪;实时动态手势识别关键技术研究[D];华南理工大学;2011年
,本文编号:2368926
本文链接:https://www.wllwen.com/wenyilunwen/yuyanyishu/2368926.html