基于图式理论的高中生导数学习的研究
[Abstract]:From Kant's exposition of the philosophical significance of schema to Rumehart's comprehensive and systematic interpretation of schema, schema theory has undergone a process of continuous improvement and development, and has been widely used in different fields. Based on the existing research on schema theory and derivative, this paper constructs the theory of derivative schema by using the methods of literature analysis, questionnaire, interview and statistical analysis, and systematically studies the situation of derivative schema of senior high school students. Schema theory can alleviate the contradiction between the due value and practical difficulties of the study of the guide. On this basis, this paper puts forward the research questions of this paper: the guidance of senior high school students. The second chapter is the summary of the research. This part mainly carries on the summary analysis to the related research of the schema and the derivative. Through the analysis, we can know that although the schema and the derivative are two hot research fields at present, but uses the schema theory to carry on the derivative. Chapter 3 is the theoretical analysis of the guiding learning of senior high school students based on schema theory. This part elaborates the guiding role of Schema Theory in guiding learning, and the relationship between schema and knowledge structure diagram, and further constructs the theory of derivative schema from the definition of concept, schema characteristics. Chapter Four is the compilation of the derivative Schema Questionnaire for senior high school students. Referring to the study of mathematical schema and senior high school derivative learning, this part compiles a questionnaire for senior high school students to understand the mastery of the derivative schema. The fifth chapter is an empirical study on the derivative schema of senior high school students. The main conclusions are as follows: 1. There are differences between the sequence of the student's sub-schema and the arrangement of the textbook content, indicating that the derivative schema does exist. 2. As far as the characteristics of the derivative schema are concerned, the breadth of the student's derivative schema concentrates on 8-12 knowledge points; the clarity and relevance of the derivative schema are not high; the attitude of individual evaluation is positive.3. From the analysis of subject, learning level and gender, there is no gender difference in the breadth and individual evaluation of the derivative schema of senior high school students; there is no significant difference in the individual evaluation of students with different learning level. 4. For the three types of schema, the procedural schema is the best to master, and the strategic schema is the worst. 5. From the perspective of each type of schema, there is no gender difference in the breadth and individual evaluation of the derivative schema of senior high school students. It is the only factor affecting the distribution of declarative schemata (in terms of subjects, gender, and learning level). Subjects and learning level are all factors affecting the distribution of procedural schemata and strategic schemata. Gender is not the factor affecting the distribution of the three sub-schemata. Chapter 6 Teaching Suggestions. Analysis based on survey data and further research The results of the interview are as follows: 1. find the growth point of the schema; 2. students as the main body, teachers as the leading; 3. give students enough time to think independently; 4. cooperative learning, communication and interaction; 5. create a new situation, so that students take the initiative to misuse schema; 6. make full use of information technology. The teaching strategy is given. Finally, the research is summarized and the research needs to be improved.
【学位授予单位】:山东师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:G633.6
【参考文献】
相关期刊论文 前10条
1 李慧娟;傅海伦;权奎;;试论高中导数学习的教育价值[J];高中数学教与学;2016年24期
2 李慧娟;傅海伦;权奎;;数学学习的碎片化与整体化[J];中学数学杂志;2016年11期
3 郑毓信;;数学教育视角下的“核心素养”[J];数学教育学报;2016年03期
4 操明权;;高三生物学教学中基于单元整合的“碎片化”复习建议[J];生物学教学;2016年05期
5 傅海伦;李慧娟;米旺超;;从分层教学谈春季高考生的数学复习[J];山东教育;2016年09期
6 毛娜娜;;论知识结构图在高中数学教学中的应用[J];考试周刊;2016年17期
7 韩峰;郄会爱;;树型知识结构图在学生构建知识中的作用[J];教育观察(下半月);2015年18期
8 沈华伟;;“碎片化”学习的成因、影响及引导[J];教育评论;2015年12期
9 李慧娟;傅海伦;李想;;对中学数学课堂教学中小组合作的再认识[J];中小学教师培训;2015年12期
10 焦凤龙;;应用导数解题常见易错点剖析[J];中学教学参考;2015年35期
相关博士学位论文 前2条
1 秦德生;学生对导数的理解水平及其发展规律研究[D];东北师范大学;2007年
2 郭兆明;数学高级认知图式获得方式的比较研究[D];西南大学;2006年
相关硕士学位论文 前10条
1 向玉梅;高中生导数学习挫折的归因研究[D];山东师范大学;2016年
2 胡秀伟;高中数学平面向量问题图式的研究[D];山东师范大学;2015年
3 华燕萍;高中生“导数及其应用”学习中的常见错误分析及教学对策研究[D];上海师范大学;2014年
4 李映芝;概念图在高中生数学学习中的应用[D];天津师范大学;2014年
5 马真真;对导数概念及相关内容学习状况的调查研究[D];首都师范大学;2013年
6 吴晓波;高中生“导数及其应用”学习障碍的探究[D];山东师范大学;2013年
7 张永军;问题图式对高中生数学问题解决影响的研究[D];东北师范大学;2012年
8 刘悦;初中生数学问题图式的研究[D];东北师范大学;2012年
9 程笑雪;初中生代数应用题图式研究[D];华东师范大学;2012年
10 苏洪华;图式概念的哲学解读及其在中学地理教学中的建构[D];山东师范大学;2011年
,本文编号:2200819
本文链接:https://www.wllwen.com/zhongdengjiaoyulunwen/2200819.html