当前位置:主页 > 教育论文 > 高中教育论文 >

高中生向量理解水平的调查研究

发布时间:2019-01-07 21:08
【摘要】:20世纪以来,数学理解(Mathematical understanding)问题,业已成为当今数学教育研究的又一个热点话题。随着课程改革的不断推进,许多国家都已将向量作为高中数学的教学内容。我国在1996年颁发的《全日制普通高级中学数学教学大纲》将“平面向量”列为了必修内容,将空间向量列为处理空问几何问题的一种方法,从此向量正式进入我国的高中数学课程;2003年教育部颁布的《普通高中数学课程标准(实验)》中在必修模块4和选修系列2-1当中分别设置了平面向量和空间向量。现在向量已经成为高中数学的重要内容,现实教学中高中生对向量的理解现状如何?教师如何根据处于不同理解层次学生的情况设计和实施教学,选择教学策略成了高中教师关注的问题。 本文以APOS理论为基础,以向量概念为载体,通过测试调查和访谈法对扬州市289名高中生和3位数学教师进行了“高中生向量理解水平的调查研究”,具体的研究问题包括:(1)调查向量单元学习后高中生的理解现状如何;(2)探讨分析学生达到某种理解水平的原因是什么;(3)基于学生的理解水平,有效的数学教与学的策略是什么。笔者对调查得来的数据进行了定量和定性分析,得到了以下结论: (1)关于向量操作阶段的理解,根据调查统计发现,高一学生有67.53%是优秀,调查的学生当中都在合格及以上;高三年级学生有38.21%达到了优秀,另有45.75%的学生处于良好水平。两个年级的学生已基本能达到向量操作阶段的常规水平。学生基本能判断一个量是否为向量,能理解物理矢量与标量之间的本质区别。 (2)学生对各种类型的向量的特征理解存在差别。在考察的过程,学生往往容易忽略对零向量的考虑,缺乏分类讨论的思维习惯。 (3)学生对向量各种表征形式之间的转化的理解存在一定的单向性。从图像形式转为符号和坐标形式、符号与坐标之间的转化较为容易,但是从符号形式转化为图像形式解决问题较困难。 (4)高三学生比高一学生在运用向量解决问题时有较高的灵活性。但从知识网络联系看,两个年级的网络内容都不够丰富,并没有呈现出随年级的线性增长,联系的对象以下位概念为主,缺乏对平行概念的联系。 结合本研究的结果,笔者提出了几点教学要求:(1)丰富感性经验,从直观上理解概念;(2)从多种表征方式理解概念;(3)注意加强知识点之间的联系。并对师范生的培养提出两点建议:(1)随着专业知识的积累,注意初等数学中相关概念的理解;(2)依据师范性开展研究性学习,自觉提高对初等数学知识的理解水平。
[Abstract]:Since the 20th century, mathematics understanding of (Mathematical understanding) has become another hot topic in mathematics education. With the development of curriculum reform, many countries have taken vector as the teaching content of high school mathematics. In 1996, the Mathematics syllabus of Full-time General High School in our country made "plane vector" a compulsory subject, and space vector as a method to deal with the problem of space geometry. Since then vector formally entered our senior high school mathematics curriculum; In the "ordinary Senior Middle School Mathematics Curriculum Standard (experiment)" issued by the Ministry of Education in 2003, plane vector and space vector were set in compulsory module 4 and elective series 2-1, respectively. Now vector has become an important part of senior high school mathematics. What is the current situation of high school students' understanding of vector in practical teaching? How to design and implement the teaching according to the situation of students at different levels of understanding and how to choose teaching strategies have become the problem that high school teachers pay attention to. Based on the theory of APOS and the concept of vector, this paper makes an investigation on the level of vector understanding among 289 senior high school students and 3 mathematics teachers in Yangzhou by means of test investigation and interview. The specific research questions include: (1) the current situation of high school students' understanding after studying vector unit; (2) explore and analyze the reasons for students to reach a certain level of understanding, (3) based on the level of understanding of students, what are the effective strategies of mathematics teaching and learning. The author makes a quantitative and qualitative analysis of the data obtained from the investigation, and draws the following conclusions: (1) the understanding of the stage of vector operation, according to the survey statistics, shows that 67.53% of the first year students are excellent. All the students surveyed were qualified and above; 38.21% of the students in Grade 3 were excellent, and 45.75% of the students were in good level. Students in two grades have basically reached the normal level of vector operation. Students can basically judge whether a quantity is a vector and understand the essential difference between a physical vector and a scalar. (2) there are differences in students' understanding of the characteristics of various types of vectors. In the course of investigation, students tend to ignore the consideration of zero vectors and lack the habit of thinking about classification and discussion. (3) the students' understanding of the transformation between vector representations is unidirectional. From image form to symbol form and coordinate form, the transformation between symbol and coordinate is easy, but it is difficult to solve the problem from symbol form to image form. (4) Senior three students have higher flexibility in using vector to solve problems. But from the point of view of knowledge network connection, the network content of the two grades is not rich enough, and does not show the linear growth with grade, the object of connection is mainly the concept of the following position, and lacks the connection to the concept of parallelism. Combined with the results of this study, the author puts forward several teaching requirements: (1) enriching perceptual experience, understanding concepts intuitively; (2) understanding concepts from various representations; (3) paying attention to strengthening the relationship between knowledge points. Two suggestions are put forward for the cultivation of normal school students: (1) with the accumulation of professional knowledge, attention should be paid to the understanding of the related concepts in elementary mathematics; (2) the research study should be carried out according to the teachers' nature, and the level of understanding of elementary mathematics knowledge should be improved consciously.
【学位授予单位】:扬州大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:G633.6

【参考文献】

相关期刊论文 前10条

1 谢芳;张春生;;《普通高中数学新课程标准(实验)》解读[J];山西广播电视大学学报;2009年03期

2 潘小明;概念理解 重在建立恰当的心理表征[J];数学通报;2000年09期

3 ;今日数学及其应用[J];数学通报;1994年07期

4 陈国正;对一道课本习题答案的意见[J];数学通报;1995年03期

5 刘锡园;数学直观我见[J];数学教育学报;1998年01期

6 马复;试论数学理解的两种类型──从R.斯根普的工作谈起[J];数学教育学报;2001年03期

7 李淑文,张同君;“超回归”数学理解模型及其启示[J];数学教育学报;2002年01期

8 黄燕玲,喻平;对数学理解的再认识[J];数学教育学报;2002年03期

9 于新华,杨之;数学理解的层次性及其教学意义[J];数学教育学报;2005年02期

10 濮安山;史宁中;;从APOS理论看高中生对函数概念的理解[J];数学教育学报;2007年02期

相关博士学位论文 前3条

1 郭兆明;数学高级认知图式获得方式的比较研究[D];西南大学;2006年

2 陈雪梅;中学向量课程与教学的研究[D];华东师范大学;2007年

3 徐彦辉;数学理解的理论探讨与实证研究[D];华东师范大学;2009年

相关硕士学位论文 前9条

1 郑秀云;APOS理论指导下的高中数学概念教学[D];福建师范大学;2003年

2 曹金明;高中数学课程中向量教学研究[D];西北师范大学;2004年

3 兰冲;APOS理论下的函数概念认知及教学启示[D];华中师范大学;2006年

4 彭勇;关于向量及其教学研究[D];华中师范大学;2006年

5 苏文娟;中学生数学理解教学现状研究[D];南京师范大学;2006年

6 张凤莲;高中数学中的向量研究[D];华中师范大学;2007年

7 莫韬;基于APOS理论的圆锥曲线概念教学实证研究[D];广西师范大学;2007年

8 赵宇;空间向量对立体几何教与学影响的研究[D];东北师范大学;2008年

9 陈东强;中学数学向量内容的教学研究[D];河北师范大学;2009年



本文编号:2404166

资料下载
论文发表

本文链接:https://www.wllwen.com/zhongdengjiaoyulunwen/2404166.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ab21c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com