当前位置:主页 > 科技论文 > 路桥论文 >

阻尼器对斜拉桥索力估算影响的研究

发布时间:2022-01-03 07:35
  对于斜拉桥而言,拉索是最关键的承载构件之一。然而,由于拉索自身固有阻尼很小,其在受风荷载等作用下经常产生大幅振动,严重影响拉索的安全与寿命。因此,许多拉索都安装了不同类型的阻尼器,以减少拉索的振动。为了掌握拉索的运行安全状态,需要对拉索索力进行准确的估计。由于安装的阻尼器改变了拉索结构的动力特性,不可避免地会影响拉索索力估算的结果。但是,目前对安装的阻尼器如何影响索力估算精度的研究还很少。在本研究中,我们将系统地研究安装阻尼器对拉索索力识别精度的影响。本文考虑了两种类型的拉索动力模型。在第一个模型中,拉索被模拟为没有下垂的张紧弦模型;在第二个模型中,考虑拉索重力下垂对其动力特性的影响。为了提高有阻尼拉索动力特性计算的效率,在sin形函数的基础上,增加了受阻尼单元荷载作用的拉索静态变形的形状函数,使组合后的振型可以更好地逼近拉索-阻尼组合系统实际模态振型。采用伽辽金法对系统的固有频率进行了分析。还考虑了两种类型的阻尼器模型。在第一个模型中,用一个简单的弹簧和粘性阻尼器模型来模拟阻尼器。在第二个模型中,采用非线性模型对阻尼器进行建模。采用线性化技术,对非线性阻尼模型的索-阻尼系统的固有频率... 

【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校

【文章页数】:81 页

【学位级别】:硕士

【文章目录】:
摘要
Abstract
Chapter1 Introduction
    1.1 Research Background
    1.2 The Source of Topic
        1.2.1 Types of Cable Tension Estimation Methods
    1.3 Potential Problems
    1.4 Overview of Thesis
Chapter2 Literature Review
    2.1 Background
    2.2 Vibration Based Cable Tension Estimation Methods
        2.2.1 Vibration Based Cable Tension Estimation Method Neglecting Both Sag and Bending Stiffness
        2.2.2 Vibration Based Cable Tension Estimation Method Considering Sag and Neglecting Bending Stiffness
        2.2.3 Vibration Based Cable Tension Estimation Method Considering Bending Stiffness and Neglecting Sag
        2.2.4 Vibration Based Cable Tension Estimation Method Considering Both Sag and Bending Stiffness
    2.3 Practical Formulation
    2.4 Empirical Formulation for Cable Tension Estimation
        2.4.1 Effect of Sag on Cable Fundamental Frequency
        2.4.2 Effects of Bending Stiffness of Cables
        2.4.3 Empirical Formulas
    2.5 Summary
Chapter3 Effects of Dampers on Cable Tension Estimation Using Taut String Model
    3.1 Introduction
    3.2 Motion Equation of Cable
    3.3 Galerkin Approach
        3.3.1 Deriving a Dynamic Equation of System
        3.3.2 Extension of System Equations
    3.4 Solve Cable’s Differential Equation using Galerkin Method
    3.5 Control Oriented Model Development
    3.6 Formulation of Mass Matrix
    3.7 Formulation of Stiffness Matrix
    3.8 Linearization of Nonlinear System
    3.9 Parametric Study
        3.9.1 Natural Frequency against Location of damper
        3.9.2 Natural Frequency against Damper’s Stiffness Coefficient
        3.9.3 Natural Frequency against damper’s Coefficient
        3.9.4 Cable Tension Approximation against Damper’s Location
        3.9.5 Cable Tension Approximation against Damper’s Stiffness
        3.9.6 Cable Tension Approximation against Damper’s Coefficient
    3.10 Summary
Chapter4 Effects of Dampers on Cable Tension Estimation of Cables with Sag..
    4.1 Introduction
    4.2 Motion Equation of Cable
    4.3 Solve Cable’s Differential Equation using Galerkin Method
    4.4 Shape Functions
    4.5 Formulation of Mass Matrix
    4.6 Formulation of Stiffness Matrix
    4.7 Linearization of Nonlinear System
    4.8 Parametric Study
        4.8.1 Natural Frequency against Location of damper
        4.8.2 Natural Frequency against Damper’s Stiffness Coefficient
        4.8.3 Natural Frequency against damper’s Coefficient
        4.8.4 Cable Tension Estimation against Damper’s Location
        4.8.5 Cable Tension Estimation against Damper’s Stiffness Coefficient
        4.8.6 Cable Tension Estimation against Damper’s Coefficient
    4.9 Summary
Conclusion
References
Acknowledgement
Resume


【参考文献】:
期刊论文
[1]考虑垂度及抗弯刚度影响的斜拉桥索力测试[J]. 吴霄,肖汝诚.  华中科技大学学报(自然科学版). 2014(03)
[2]基于振动理论的索力求解的一个实用计算公式[J]. 甘泉,王荣辉,饶瑞.  力学学报. 2010(05)
[3]索结构中拉索张力测量的原理与方法[J]. 陈鲁,张其林,吴明儿.  工业建筑. 2006(S1)



本文编号:3565862

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/3565862.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b831c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com