随机森林算法在高分辨遥感影像土地覆被分类中的实现和应用
[Abstract]:The study of land cover change has become the core and hotspot of global change and modern geoscience. In the study of land cover change, land cover classification is the most basic and key link. Land cover classification needs powerful classification method. Stochastic forest is a powerful machine learning classifier, which is an integrated learning method based on non-parametric regression algorithm compared with traditional decision tree. At present, with the launch of many high-resolution satellites one after another, the large amount of high-resolution images, the reduction of mixed pixels and the increase of ground object information, however, the improvement of spatial resolution does not improve the classification accuracy. There will be a reduction in classification accuracy. The traditional methods based on pixel spectral information classification can not meet the requirements of production when they are applied to the classification of high-score images. The increase of ground object information is reflected in the fact that the texture structure of the ground object becomes very clear with the improvement of spatial resolution. It is very important to extract stable and discriminative texture features to improve the classification accuracy of the image. In this paper, two villages and towns in Shitai County were selected as data sources. The spatial heterogeneity of landscape in the study area is high, the area of shadow coverage is large, and the color separability of some categories in the field survey is not strong. Therefore, in this study, the geostatistics method, which has been widely used in the texture extraction of remote sensing images, is used to extract the texture features, the vegetation index is extracted by the Band Math operation of the original wave band, and the importance of the feature is screened by the random forest calculation. The relationship between the number of changing trees, the combination of features and the classification accuracy is tested and compared with the results of maximum likelihood method. The results show that: (1) the generalization error of random forest converges to the fixed value with the increase of the number of trees (N), the classification accuracy increases with the increase of N value, and the computer operation efficiency decreases. In this study, the final selection of NX500 can not only meet the classification accuracy but also ensure the operational efficiency. (2) applying the random forest and maximum likelihood method to evaluate the classification accuracy of texture feature combination, the Kappa coefficients are 0.7134 and 0.6315 respectively, which is higher than that of adding planting. By exponential feature combination and combination of texture and vegetation index features. The classification accuracy of the stochastic forest algorithm is obviously higher than that of the maximum likelihood method. In addition, texture information can improve the classification accuracy to a certain extent. It provides an effective basis for the differentiation of different ground types with close spectral values. The stochastic forest algorithm has a better comprehensive performance. It can also guarantee the efficiency of the operation and is more suitable for practical production and application under the premise of ensuring the classification accuracy. It has certain application value. At the same time, the operation is convenient, the number of the required features and the required features can be calculated by the computer, and the N value that meets the classification accuracy can also be predicted. The maximum likelihood method is not complicated, but the precision is relatively low.
【学位授予单位】:安徽农业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:S771.8
【相似文献】
相关期刊论文 前10条
1 张雷;王琳琳;张旭东;刘世荣;孙鹏森;王同立;;随机森林算法基本思想及其在生态学中的应用——以云南松分布模拟为例[J];生态学报;2014年03期
2 李旭青;刘湘南;刘美玲;吴伶;;水稻冠层氮素含量光谱反演的随机森林算法及区域应用[J];遥感学报;2014年04期
3 王盼;陆宝宏;张瀚文;张巍;孙银凤;季妤;;基于随机森林模型的需水预测模型及其应用[J];水资源保护;2014年01期
4 王栋;岳彩荣;田传召;范怀刚;王跃辉;;基于随机森林的大姚县TM遥感影像分类研究[J];林业调查规划;2014年02期
5 刘毅;杜培军;郑辉;夏俊士;柳思聪;;基于随机森林的国产小卫星遥感影像分类研究[J];测绘科学;2012年04期
6 吕淑婷;张启敏;;一类带Poisson跳的随机森林发展系统数值解的收敛性[J];宁夏大学学报(自然科学版);2010年04期
7 李治;杨晓梅;孟樊;范文义;;物候特征辅助下的随机森林宏观尺度土地覆盖分类方法研究[J];遥感信息;2013年06期
8 金宇;周可新;方颖;刘欣;;基于随机森林模型预估气候变化对动物物种潜在生境的影响[J];生态与农村环境学报;2014年04期
9 马明;岳彩荣;张云飞;李小婷;张博;;基于TM影像的土地覆盖分类比较研究[J];绿色科技;2014年03期
10 ;[J];;年期
相关会议论文 前7条
1 谢程利;王金桥;卢汉清;;核森林及其在目标检测中的应用[A];第六届和谐人机环境联合学术会议(HHME2010)、第19届全国多媒体学术会议(NCMT2010)、第6届全国人机交互学术会议(CHCI2010)、第5届全国普适计算学术会议(PCC2010)论文集[C];2010年
2 武晓岩;方庆伟;;基因表达数据分析的随机森林方法及算法改进[A];黑龙江省第十次统计科学讨论会论文集[C];2008年
3 张天龙;梁龙;王康;李华;;随机森林结合激光诱导击穿光谱技术用于的钢铁分类[A];中国化学会第29届学术年会摘要集——第19分会:化学信息学与化学计量学[C];2014年
4 相玉红;张卓勇;;组蛋白去乙酰化酶抑制剂的构效关系研究[A];第十一届全国计算(机)化学学术会议论文摘要集[C];2011年
5 张涛;李贞子;武晓岩;李康;;随机森林回归分析方法及在代谢组学中的应用[A];2011年中国卫生统计学年会会议论文集[C];2011年
6 冯飞翔;冯辅周;江鹏程;刘菁;刘建敏;;随机森林和k-近邻法在某型坦克变速箱状态识别中的应用[A];第八届全国转子动力学学术讨论会论文集[C];2008年
7 曹东升;许青松;梁逸曾;陈宪;李洪东;;组合树的集合体和后向消除策略去分类P-糖蛋白化合物[A];第十届全国计算(机)化学学术会议论文摘要集[C];2009年
相关博士学位论文 前4条
1 曹正凤;随机森林算法优化研究[D];首都经济贸易大学;2014年
2 雷震;随机森林及其在遥感影像处理中应用研究[D];上海交通大学;2012年
3 岳明;基于随机森林和规则集成法的酒类市场预测与发展战略[D];天津大学;2008年
4 李书艳;单点氨基酸多态性与疾病相关关系的预测及其机制研究[D];兰州大学;2010年
相关硕士学位论文 前10条
1 钱维;药品不良反应监测中随机森林方法的建立与实现[D];第二军医大学;2012年
2 贺捷;随机森林在文本分类中的应用[D];华南理工大学;2015年
3 张文婷;交通环境下基于改进霍夫森林的目标检测与跟踪[D];华南理工大学;2015年
4 李强;基于多视角特征融合与随机森林的蛋白质结晶预测[D];南京理工大学;2015年
5 朱玟谦;一种收敛性随机森林在人脸检测中的应用研究[D];武汉理工大学;2015年
6 肖宇;基于序列图像的手势检测与识别算法研究[D];电子科技大学;2014年
7 李慧;一种改进的随机森林并行分类方法在运营商大数据的应用[D];电子科技大学;2015年
8 赵亚红;面向多类标分类的随机森林算法研究[D];哈尔滨工业大学;2014年
9 黎成;基于随机森林和ReliefF的致病SNP识别方法[D];西安电子科技大学;2014年
10 丁然;基于随机森林大豆籽粒外观品质识别系统的设计与实现[D];东北农业大学;2015年
,本文编号:2288566
本文链接:https://www.wllwen.com/wenyilunwen/huanjingshejilunwen/2288566.html